开发了一种优化的针对肝细胞癌 (HCC) 的甲基化下一代测序检测方法,可直接从尿液中发现与 HCC 相关的甲基化标记物,以进行 HCC 筛查。从 31 名非 HCC 和 30 名 HCC 患者的发现队列中分离的尿液无细胞 DNA (ucfDNA) 用于生物标志物发现,鉴定出 29 个具有差异甲基化区域 (DMR) 的基因。开发了甲基化特异性 qPCR (MSqPCR) 检测方法以验证对应于 8 个基因 (GRASP、CCND2、HOXA9、BMP4、VIM、EMX1、SFRP1 和 ECE) 的选定 DMR。使用存档的 ucfDNA,发现 HCC 患者和非 HCC 患者的 GRASP、HOXA9、BMP4 和 ECE1 的甲基化存在显著差异 (p < 0.05)。使用逻辑回归模型,在 87 名非 HCC 患者和 78 名 HCC 患者的独立训练队列中,将这四种标记物与之前报道的 GSTP1 和 RASSF1A 标记物作为 6 种标记物组合进行评估。6 种标记物组合与 AFP 的 AUROC 为 0.908(95% CI,0.8656–0.9252),显著高于单独使用 AFP(AUROC 0.841(95% CI,0.778–0.904),p = 0.0026)。应用后向选择方法,发现 4 种标记物组合与 6 种标记物组合的性能相似,AFP 的敏感性为 80%,而单独使用 AFP 的敏感性为 29.5%,特异性为 85%。这项研究支持甲基化跨肾 ucfDNA 在 HCC 筛查中的潜在应用。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2023年6月22日。 https://doi.org/10.1101/2023.06.21.545516 doi:Biorxiv Preprint
DNA甲基化是调节细胞重编程和发育的必要表观遗传机制。使用全基因组纤维纤维测序的研究表明,人类和小鼠细胞和组织中的脱离DNA甲基甲基景观。然而,导致细胞类型之间巨核尺度甲基组模式差异的因素仍然鲜为人知。通过分析公共可用的258个人和301个小鼠全基因组纤维纤维测序数据集,我们透露,富含鸟嘌呤和胞嘧啶的基因组区域(位于核中心附近)在胚胎和生殖线重编程过程中都非常容易受到全球DNA脱甲基化和甲基化事件的极大影响。更重要的是,我们发现在整体DNA甲基化过程中产生部分甲基化结构域的区域更有可能恢复全球DNA脱甲基化,含有高水平的腺嘌呤和胸腺素,并且与核层层相邻。受其鸟嘌呤感染的基因组区域的空间特性可能会影响参与DNA(DE)甲基化的分子的可及性。这些特性塑造了巨型尺度的DNA甲基化模式并随着细胞的分化而变化,从而导致细胞类型中不同的巨型尺度甲基甲基组模式的出现。
1心脏肺创新中心,不列颠哥伦比亚大学,温哥华,不列颠哥伦比亚省,加拿大2分子医学与治疗中心,不列颠哥伦比亚大学,加拿大不列颠哥伦比亚省温哥华大学,加拿大温哥华大学,3月3日,伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伦敦市的伊利诺伊州伊利诺伊州大学,伦敦大学,伦敦大学,Uniziz Uniziz Unceminiz Inter,Uniziz Inuce,Uniziz Intim,Uniziz in U. Poliklinik II,德国伍兹堡大学,沃兹堡大学6号柯比研究所,UNSW悉尼,悉尼,悉尼,新南威尔士州,新南威尔士州,澳大利亚7明尼阿波利斯退伍军人事务卫生保健系统,肺部,重症监护和睡眠医学和睡眠医学和肺部,急诊医学和校友,分子,分子,分子,分校,肺病,重症监护和睡眠医学,疾病和睡眠医学,
胞嘧啶的甲基化是一种保守的表观遗传修饰,在调节甲基转移酶和去甲基酶的调节下,植物中甲基化的动态平衡。 近年来,DNA甲基化在调节动植物的生长和发展中的研究已成为研究的关键领域。 本综述描述了植物中DNA胞嘧啶甲基化的调节机制。 它总结了关于果实成熟,发育,衰老,植物高度,器官大小以及在园艺作物中生物和非生物胁迫下的果实成熟,发育,衰老,植物高度,器官大小的表观遗传修饰的研究。 审查为理解DNA甲基化机制及其与繁殖,遗传改善,研究,创新和剥削园艺作物的新品种的相关性提供了理论基础。胞嘧啶的甲基化是一种保守的表观遗传修饰,在调节甲基转移酶和去甲基酶的调节下,植物中甲基化的动态平衡。近年来,DNA甲基化在调节动植物的生长和发展中的研究已成为研究的关键领域。本综述描述了植物中DNA胞嘧啶甲基化的调节机制。它总结了关于果实成熟,发育,衰老,植物高度,器官大小以及在园艺作物中生物和非生物胁迫下的果实成熟,发育,衰老,植物高度,器官大小的表观遗传修饰的研究。审查为理解DNA甲基化机制及其与繁殖,遗传改善,研究,创新和剥削园艺作物的新品种的相关性提供了理论基础。
摘要。表观遗传机制(例如DNA甲基化)与多种疾病有关,包括癌症,心脏病,自身免疫性疾病和神经退行性疾病。虽然认识到DNA甲基化是组织的,但许多研究的局限性是能够采样感兴趣的组织的能力,这就是为什么需要诸如血液等代理组织的原因,而这些组织的甲基化状态反射了靶组织的甲基化状态。在过去的十年中,DNA甲基化已用于表观遗传钟的设计,该甲基化旨在根据算法定义的CPG集预测个体的生物年龄。许多研究发现疾病与/或疾病风险与生物年龄的增加之间存在关联,从而增加了与疾病过程相关的生物年龄增加的理论。因此,这篇综述仔细研究了DNA甲基化作为衰老和疾病的生物标志物的实用性,特别关注阿尔茨海默氏病。
摘要:细胞机械力转导在纤维化疾病进展过程中的成纤维细胞活化中起着核心作用,导致组织僵硬性增加和器官功能下降。虽然表观遗传学在疾病机械力转导中的作用已开始受到重视,但对于基质力学(尤其是机械输入的时机)如何调控成纤维细胞活化过程中的表观遗传学变化(例如DNA甲基化和染色质重组)仍知之甚少。在本研究中,我们设计了一个透明质酸水凝胶平台,其刚度和粘弹性可独立调节,以模拟正常(储能模量,G' ~ 0.5 kPa,损耗模量,G'' ~ 0.05 kPa)至纤维化程度逐渐加重(G' ~ 2.5 和 8 kPa,G'' ~ 0.05 kPa)的肺力学。随着基质硬度的增加,人肺成纤维细胞在1天内表现出心肌相关转录因子A (MRTF-A) 的扩散和核定位增加,并且这种趋势在较长的培养时间内保持稳定。然而,成纤维细胞的整体DNA甲基化和染色质组织表现出时间依赖性的变化。成纤维细胞最初在较硬的水凝胶上表现出DNA甲基化和染色质去浓缩增加,但随着培养时间的延长,这两项指标均有所下降。为了研究培养时间如何影响成纤维细胞核重塑对机械信号的响应性,我们设计了可进行原位二次交联的水凝胶,使其能够从模拟正常组织的柔顺基质过渡到类似于纤维化组织的较硬基质。当培养仅1天后开始硬化时,成纤维细胞迅速做出反应,并表现出DNA甲基化和染色质去浓缩增加,类似于静态较硬水凝胶上的成纤维细胞。相反,当成纤维细胞在第7天经历后期硬化时,DNA甲基化和染色质凝聚没有变化,表明诱导了持续的成纤维细胞表型。这些结果突显了成纤维细胞在动态机械扰动下活化时相关的时间依赖性核变化,并可能提供控制成纤维细胞活化的靶向机制。目录条目
遗传和产前环境因素塑造了后来的胎儿发育和心脏代谢健康。遗传和产前环境因素的关键靶标是胎盘的表观组,这是一种与胎儿生长和以后疾病有关的器官。这项研究有两个目的:(1)识别和功能表征胎盘可变区域(VMR),它们是表观基因组中具有高个体间甲基化变异性的区域; (2)研究胎儿遗传基因座和12个产前环境因素(母体心脏代谢,心理社会,人口统计学和与产科相关)对甲基化的贡献。akaike的信息标准用于选择四个模型中的最佳模型[仅产前环境,仅基因型,基因型和产前环境(G + E)的添加效应以及它们的相互作用效果(G×E)]。我们在胎盘中确定了5850 VMR。在70%的VMR中甲基化最好用G×E解释,其次是基因型(17.7%)和G + E(12.3%)。单独的产前环境最好仅解释了0.03%的VMR。我们观察到95.4%的G×E模型和93.9%的G + E模型包括孕妇年龄,均衡,递送模式,孕产妇抑郁症或妊娠体重增加。VMR甲基化位点及其调节性遗传变异含量(p <0.05),对于已知与调节功能和复杂性状联系的基因组区域。这项研究提供了胎盘中VMR的全基因组目录,并强调指出,通过整合遗传和产前环境因素,最好阐明胎盘DNA甲基化的胎盘DNA甲基化的变化,而仅通过环境因素而言,可以最好地阐明胎盘DNA甲基化的变化。
耐链霉素(SM)的结核分枝杆菌( M . tuberculosis )是结核病(TB)治疗中关注的焦点,但其具体的耐药机制尚不清楚。本研究主要通过多基因组学的联合分析,对链霉素耐药相关基因进行初步筛选。通过全基因组甲基化、转录组和蛋白质组分析,阐明结核分枝杆菌H37Rv中特定基因与链霉素耐药性的关联。甲基化分析显示,SM耐药组与正常组之间有188个基因存在差异甲基化,其中89个基因为高甲基化,99个基因为低甲基化。功能分析显示,这188个差异甲基化基因富集在74条通路中,多数富集在代谢途径中。转录组分析显示耐药组与正常组之间有516个差异表达基因,其中显著上调和下调的基因分别有263和253个。KEGG分析表明这516个基因富集在79条通路上,大多数基因富集在组氨酸代谢途径,甲基化水平与mRNA丰度呈负相关。蛋白质组分析发现56个差异表达蛋白,其中14个上调,42个下调。此外,通过综合分析获得了3个枢纽基因(coaE、fadE5和mprA)。本研究结果提示,整合的DNA甲基化、转录组和蛋白质组分析可为SM耐药结核分枝杆菌H37Rv的表观遗传学研究提供重要资源。
图3 脑区以及健康老年人、PD、DLB 和 MCI 组织中 m 6 A 修饰 RNA 和 YTHDF1 及 YTHDF3 读取蛋白丰度变化的热图。m 6 A 修饰 RNA 丰度以及 YTHDF1 和 YTHDF3 表达在各个区域和疾病类别中红色增加、黄色正常、绿色减少。与健康对照组织相比,发现 DLB 组织在所有脑组织区域中 m 6 A 修饰 RNA 丰度持续增加,并且 YTHDF1 和 YTHDF3 表达普遍增加。相反,PD 组织在三个脑区中显示 m 6 A 修饰 RNA 显著减少,并且 YTHDF 读取蛋白表达没有一致的变化模式。DLB,路易体痴呆;MCI,轻度认知障碍;PD,帕金森病。