根据我们的协议,接受全腹部蚀刻的患者还必须具有长期的健康和健身目标。总体脂肪应在8%至15%之间。通常,这些患者非常适合,腹部扁平,但希望脂肪组织的特定减少以增强和详细说明肌肉组织。患者选择对于维持长期结果至关重要。我们以10年的术后结果进行了证明(图1)。我们认为,使用营养师和/或私人教练不一定是强制性的,因为许多患者保持健康的生活方式和低身体脂肪,而与这些介入无关。我们针对修饰的腹部蚀刻的选择标准,其中通过谱系半肌和沿着Linea alba的定义获得了较软的腹部轮廓,但不一定是“六羽”的完整肌肉定义,并不像全腹部蚀刻患者那样严格。与全腹蚀刻患者不同,他们的腹部脂肪垫中等。这些患者还应该具有运动性腹部肌肉和合理的健康计划。这项研究还证明了10%的血清率。我们注意到1990年代首次开始此过程时的血清瘤率很高,并开始使吸脂端口开放到排水管。自从这种情况下,我们注意到血清瘤速率为0%。这项研究也不特别认识到与腹部蚀刻相关的陡峭学习曲线和技术困难。意识到技术并学习这种技术确实存在陡峭的学习曲线,应该谨慎地形成。从使用较小,侵略性较小的插管和改良的腹部蚀刻开始(仅蚀刻Linea alba和Linea semilunaris)是一种安全的方法,对于外科医生开始使用该技术。首先通过浅表吸脂和差异脂质来建立凹槽是关键的。
*1 Kurokawa等。(2024)。X射线粉末衍射分析的可靠性来确定土壤的矿物质成分。土壤科学学会杂志,88,1942–1958。*2 Yang等。(2025)。CO 2去除和碳预算改进,由增强的岩石风化引起:日本北海道的现场实验。农业生态系统中的营养循环(正在审查)。*3 Uchibayashi等。(2025)。通过增强的岩石风化,玄武岩施用对土壤化学特性和元素摄取的影响。土壤科学和植物营养(正在审查)。
摘要。在本文中,我们介绍了使用主方程构建的标准马尔可夫状态模型的P -ADIC连续类似物。P -ADIC过渡网络(或超级网络)是一个复杂系统的模型,该模型是层次能量景观的复杂系统,能量景观上的马尔可夫过程和主方程。能量景观由有限数量的盆地组成。每个盆地都是由在有限的常规树中层次组织的许多网络配置中形成的。盆地之间的过渡由过渡密度矩阵确定,其条目在能量景观上定义。能量景观中的马尔可夫过程编码网络的时间演变,因为从能量格局的配置之间进行了随机过渡。主方程描述了配置密度的时间演变。我们专注于两个不同盆地之间的过渡速率是恒定功能,并且每个盆地内部的跳跃过程都由p- adial径向功能控制。我们明确解决了此类网络附加的主方程的库奇问题。该问题的解决方案是对给定初始浓度的网络响应。如果附加到网络的Markov过程是保守的,则网络的长期响应由Markov链控制。如果该过程不保守,则网络具有吸收状态。我们定义了一个吸收时间,这取决于初始浓度,如果这段时间是有限的,则网络在有限的时间内达到了吸收状态。我们在网络的响应中识别负责将网络带到吸收状态的术语,我们将其称为快速转移模式。快速过渡模式的存在是能量格局是超级实体(层次)的假设的结果,而我们最好的理解,无法使用Markov State Models的标准方法获得该结果。如今,人们广泛接受的是,蛋白质本地状态是可以从任何其他状态迅速到达的动力学枢纽。快速过渡模式的存在意味着超级网络上的某些状态作为动力学枢纽。
摘要:蜗牛养殖(Helicanture)在世界许多地方被认为是重要的农业部门,因为它在动物蛋白的生产中作用。然而,对蜗牛研究全球研究状况的整体图片进行了更少的研究。我们旨在根据使用RSTUDIO软件在1949年至2023年间发表的有关蜗牛研究的总共212篇研究文章进行文献评估。关于蜗牛研究的研究与年数(r 2 = 0.474; y = 0.1162x – 228.03)呈正相关,这表明该领域正在受到全球关注。在出版和引文数字方面,最有生产力的国家是美国,而出版物最多的组织是日本的九州大学。“ Snail/s”是最相关的主题的关键字,软体动物研究杂志是主要的学术来源,A,Staikou和Neiman M是蜗牛研究中最有影响力的作者。生产,繁殖,生长,生物柴油,腹足类和粮食安全是该领域最重要的关键字热点。这些发现可以帮助科学家和其他利益相关者更好地理解蜗牛研究的方向,这对于未来的调查和该领域的农业实践很有价值。关键词:文献计量学,腹足动物,旋转,rstudio,可视化分析简介
基于物理的神经形态计算是当前数字技术的有前途的算法,因为其能量效率,并行性的潜力和较大的带宽。在各种体系结构中,复发性神经网络(RNN)特别适合以频度依赖性(例如音频和视频信号)处理数据[?]。但是,他们解决特定任务的监督培训通常是数据密集型的,需要调整网络的互发矩阵,这是硬件实现的挑战。储层计算(RC)提供了一个框架来通过简化训练过程来克服此问题,从本质上讲,将RNN未经训练以及在结合RNN节点的瞬时响应的输出层上使用简单的lin-1 eR-ear回归[??]。这些考虑因素通过使用七个技术平台(包括微电子学,旋转和光子学[??]。在后一类中,已经提出了各种插曲[? ]包括大规模的自由空间体系结构[???],光反馈体系结构[???]和光子集成电路[??]。这些物理系统已经在各种任务上证明了最先进的性能,包括非线性通道均衡,混乱的时间序列预测和语音识别[?]。],其中一个物理非线性反馈体系结构依赖于时间延迟储层(TDRC)方法[?
拖拉图是脑白质的虚拟表示。它由数百万的虚拟纤维组成,编码为3D polyline,近似于白质轴突途径。迄今为止,拖拉图是最准确的白质表示形式,因此用于诸如神经塑性,脑部疾病或脑网络的术前计划和研究。然而,众所周知的问题是,大部分的拖拉机在解剖学上并不合理,并且可以被视为跟踪程序的伪像。使用验证者,我们使用一种新颖的完全监督的学习方法解决了过滤术的问题。与基于信号重建和 /或大脑拓扑正则化的其他方法不同,我们使用现有的白质解剖学知识来指导我们的方法。使用根据解剖学原理注释的拖拉图,我们训练我们的模型验证者,以将纤维分类为解剖上合理或不合理的纤维。所提出的验证模型是一种原始的几何深度学习方法,可以处理可变尺寸纤维,同时又不变到纤维方向。我们的模型将每个文件视为点的图表,并且通过通过提出的序列边缘卷积之间的边缘学习特征,它可以捕获基本的解剖学特性。在一组广泛的实验中,输出过滤结果高度准确,稳健,并且快速;使用12GB的GPU,对1m纤维的拖拉图进行了填充,需要少于一分钟。可在https://github.com/fbk-nilab/verifyber上获得验证实现和训练有素的模型。
背景和目的:患有原发性硬化性胆管炎(PSC)的人具有可变且经常进行性疾病的病程,与胆道和实质变化有关。这些变化通常通过磁共振成像(MRI)评估,包括磁共振胆管造影术(MRCP)的定性评估。我们的目的是研究新型客观定量MRCP指标与预后分数和患者结局的关联。方法:我们进行了一项回顾性研究,其中包括77个具有基线MRCP图像的大型Duct PSC的个体,后处理后处理以使用MRCP+ TM获得胆管的定量测量。参与者的分析得分,通过振动控制的瞬态弹性图和生化指数在基线时收集。不良结果 - 无生存率是在12年内没有代偿性肝硬化,肝移植(LT)或与肝脏相关的死亡的。通过COX回归建模评估了MRCP+衍生指标的预后价值。结果:记录了总计386例患者,16例代偿性,2例LT和5例与肝有关的死亡。基线时,约有50%的患者被分类为患疾病并发症的风险。MRCP+指标,尤其是描述胆管扩张严重程度的指标,与所有预后因素相关。单变量分析表明,代表管道直径,扩张和狭窄和/或扩张的导管百分比的MRCP+指标与生存有关。©2022作者。在多变量调整的分析中,中位导管直径与存活率显着相关(危险比10.9,95%CI 1.3 - 90.3)。结论:PSC患者中的MRCP+指标与生化,弹性和放射学预后分数相关,并可以预测无效的生存率。lay摘要:在这项研究中,我们在患有原发性硬化性胆管炎(PSC)的患者中评估了由软件工具(MRCP+)自动提供的新型客观定量MRCP指标与预后分数和患者结果的关联。我们观察到,PSC患者的MRCP+指标与生化,弹性和放射学预后分数相关,并且可以预测无效的生存率。由Elsevier B.V.代表欧洲肝脏研究协会(EASL)出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
在第一部分中,我们将从一些代数可解决的问题开始。这种方法的关键是观察到,任何物理系统的量子理论都可以看作是可观察到的代数的单一不可约形表示。,我们将探索并阐明单位性和不可及性的含义,因为我们更深入地考虑了我们考虑的各种示例。我们的方法将更多地是一种自下而上的方法,从细节转变为一般的修复。但是,此时一些一般的观察结果可能很有用。可观察到的操作员代数不能只是任何代数。我们需要一种将代数的操作员或元素连接到可以在实验室中测量的实数的方法。因此,有必要在代数上进行某个规范的概念。也需要一个共轭概念来赋予操作员的墓穴。最少的要求将以观察力为c ∗ - 代数。(对于相对不变的现场理论,需要其他要求,例如Poincar´e不变性。)
抽象的全稳态电池(ASSB)被认为是提高电池安全性和能量密度的最有希望的候选者。硫化物电解质具有狭窄的电化学窗口,该窗口阻碍了其应用与高压阴极。具有高压耐力的卤化物电解质可以帮助解决此问题。在此,采用喷涂和污染方法的组合用作处理自由的LI 6 PS 5 Cl(LPSCL)不对称的电解质膜(19.23Ωcm2,75μm),用10μmLi3包含6(Licl)层装饰。LICL-LPSCL不对称的电解质膜增强了高压稳定性,使LINI 0.83 CO 0.83 CO 0.11 Mn 0.06 O 2(NCM811)和LI 1.2 Ni 0.13 CO 0.13 CO 0.13 CO 0.13 Mn 0.54 0.54 O 2(LRMO)Cathodes。NCM811 | LICL-LPSCL | NSI ASSB的初始库仑效率(ICE)为85.13%,在200个周期后的容量保留率为77.16%。Compared with the LPSCl membrane, the LICl-LPSCl membrane displayed high stability with the LRMO cathode as the charging cut-off voltage increased to 4.7 V, which improved the initial charge capacity from 143 to 270 mAh g −1 and achieved stable cycling of 160 mAh g −1 at 0.5 C. Additionally, we attempted continuous LICl-LPSCl membrane production and utilized the product to fabricate a基于LRMO的小袋型ASSB。LICL-LPSCL电解质膜的制造证明了其在Assbs中的可控和行业适应应用的潜力。
Gandhigram农村研究所的农村能源中心致力于通过教育,研究和社区影响来推进可再生能源技术。非常关注可持续性,我们弥合了学术界,工业和农村发展之间的差距。