在这项工作中,我们表明,通过利用连续量子非破坏性测量,即使在存在独立的失相噪声(通常是最有害的噪声类型)的情况下,也可以在频率估计(或磁力测量)测量方案中保留量子优势。因此,我们验证了这种增强是由于非经典关联(即自旋压缩)而得以保留的,这些关联是由测量本身动态产生的。值得注意的是,我们的方案不需要准备任何纠缠或非经典关联的探针状态:探针在经典相干自旋状态中初始化,量子增强所需的资源在条件演化过程中动态创建。此外,我们提供了证据,证明我们的结果是稳健的,并且在各种噪声强度下甚至在存在低效测量设备的情况下都适用。
在量子计量学(量子技术的主要应用之一)中,估计未知参数的最终精度通常用克拉姆-罗界限来表示。然而,在获得少量测量样本的情况下,后者不再保证具有操作意义,我们通过一个简单的例子来说明这一点。我们建议通过获得具有给定精度的估计值的概率来量化计量协议的质量。这种方法,我们称之为可能近似正确 (PAC) 计量学,可确保有限样本范围内的操作意义。精度保证对未知参数的任何值都成立,而克拉姆-罗界限则假设它是近似已知的。我们建立了与量子态多假设检验的紧密联系,这使我们能够推导出克拉姆-罗界限的类似物,其中包含与有限样本范围相关的明确校正。我们进一步研究了状态的多个副本的估计程序成功概率的渐近行为,并将我们的框架应用于自旋为 1/2 的粒子集合的相位估计示例任务。总体而言,我们的操作方法允许在有限样本范围内研究量子计量学,并为量子信息理论和量子计量学的交叉研究开辟了大量新途径。
研究了具有不确定因果顺序的切换量子通道,用于受量子热噪声影响的量子比特幺正算子相位估计的基本计量任务。报告显示,不确定顺序的切换通道具有特定功能,而传统的确定顺序估计方法则无法实现这些功能。相位估计可以通过单独测量控制量子比特来执行,尽管它不会主动与幺正过程交互 - 只有探测量子比特会这样做。此外,使用完全去极化的输入探针或与幺正旋转轴对齐的输入探针可以进行相位估计,而这在传统方法中是不可能的。本研究扩展到热噪声,之前已使用更对称和各向同性的量子比特去极化噪声进行了研究,它有助于及时探索与量子信号和信息处理相关的具有不确定因果顺序的量子通道的属性。
通过去极化噪声造成的一般量子统一操作员被复制并插入量子开关过程中,以实现因果阶的叠加。制定了所得开关的量子通道的表征,以便其在探针控制量子对的关节状态下的作用。然后,对开关通道进行了特定研究,以针对嘈杂的统一操作员的相位估计的重要层次任务,并由Fisher信息(经典或量子)评估。与常规估计技术进行了比较,其中直接在一个单阶段或两个阶段的级联中直接探测了具有定义阶的一个阶段或两个阶段的级联,或者使用两个或多个量子的使用它们的几种用途。在带有无限顺序的开关通道中,报告了特定属性,对于估计有意义,而不存在常规技术。表明,尽管它从未直接与统一相互作用,但仍可以单独测量它以进行有效的估计,同时丢弃与统一相互作用的探针Qubit。此外,对控制Qubit的测量还可以在常规估计变得不那么有效的情况下,在很难的条件下保持有效估计的可能性,例如,在不构成的输入探针或盲目情况下,当单位轴的轴时是盲目的情况。,即使输入探针倾向于与单一轴的轴或完全去极化的输入探针保持一致,在这些条件下,通过测量控制量轴的效率估计仍然是可能的,而在这些条件下,常规估计变得无效。还分析了开关通道的探针值的测量,并证明为相位估计增加了有用的功能。结果有助于对开关量子通道的性质和能力进行持续的识别和分析,并具有无限的订单,以进行信息处理,并发现了量子估计和Qubit Metrology的新可能性。
量子开关是因果顺序不确定过程的典型例子,据称在量子计量领域的某些特定任务中,它比因果顺序确定的过程具有多种优势。在本文中,我们认为,如果进行更公平的比较,其中一些优势实际上并不成立。为此,我们考虑了一个框架,该框架允许对不同类别的因果顺序不确定过程的性能(由量子 Fisher 信息量化)与因果策略在给定计量任务上的性能进行适当的比较。更一般地说,通过考虑最近提出的具有经典或量子控制因果顺序的电路类别,我们得出了不同的例子,其中因果顺序不确定的过程比因果顺序确定的过程具有(或不具有)优势,从而限定了因果顺序不确定在量子计量方面的兴趣。事实证明,对于一系列示例,已知在物理上可实现的具有因果序量子控制的量子电路类被证明比因果序量子电路以及因果叠加量子电路类具有严格的优势。因此,对此类的考虑提供了新证据,表明在量子计量学中,不确定的因果序策略可以严格胜过确定的因果序策略。
优化的量子控制可以提高量子计量的性能和抗噪能力。然而,当多个控制操作顺序应用时,优化很快就会变得难以处理。在这项工作中,我们提出了有效的张量网络算法来优化通过一长串控制操作增强的量子计量策略。我们的方法涵盖了一种普遍而实用的场景,其中实验者在要估计的通道的 N 个查询之间应用 N - 1 个交错的控制操作,并且不使用或使用有界辅助。根据不同的实验能力,这些控制操作可以是通用量子通道或变分酉门。数值实验表明,我们的算法在优化多达 N = 100 个查询的计量策略方面具有良好的性能。具体来说,我们的算法确定了一种在 N 有限但很大的情况下能够胜过最先进策略的策略。
主题1需要提高热周期,计算和能源存储和运输等过程的效率,这增加了对热量管理的关注,从而扩大了感兴趣的领域,以减少尺寸。在此框架中,基于新概念对更高多功能性和可靠性的新概念的设计对研究和行业引起了极大的兴趣,必须得到计量学可追溯性的支持。作为热通量传感器,热电热电器在灵敏度方面代表了最佳选择。但是,这些设备受到困扰,但是几个缺点,例如它们是刚性结构,其感应区域具有几何约束,并且设备的微型化是有限的。克服这些局限性的一种有希望的方法是基于横向热电效应,特别是金属的NernST效应和非异常的Nernst效应(ANE),实现了主动传感表面。尽管Nernst效应比Seebeck效应要小,
光子量子计量学利用光的量子状态,例如中午或双围状状态,以测量超出经典精确限制的未知参数。当前的方案遭受了两个严重的限制,这些局限性排除了它们的可伸缩性:由于门误差而产生具有较大光子数的状态时,指数下降(或概率)的指数下降以及此类状态对噪声的敏感性的提高。在这里,我们开发了一种确定性协议,结合了量子光学非线性和变异量子算法,该方案在这两个方面都提供了实质性改进。首先,我们展示了变分协议如何生成与量子相关的状态,而少量操作并不显着取决于光子数,从而导致在考虑门错误时的指数改善。第二,我们表明,与文献中的其他状态相比,这种状态对噪音具有更好的稳健性。由于我们的协议利用了已经出现在最先进的设置中的相互作用(例如腔Qed),因此我们希望它将在不久的将来会导致更可扩展的光子量子计量学。
创新是释放循环经济充分潜力的核心。可持续产品和实践中的开创性业务不仅获得了竞争优势,而且还获得了可观的财务回报。例如,自2015年以来,对通函解决方案的投资已达到17%。像特斯拉这样的公司,其电池回收计划和巴塔哥尼亚,通过磨损的磨损计划,体现了整合资源有效的设计,闭环系统和创新的重复使用模型如何带来巨大的环境和经济利益。