自 2019 年 5 月起,测量基础 SI 基于选定基本常数的固定值。这使得自 1990 年以来与 SI 分离的电气计量重新回归到通用单位制中。通过约瑟夫森效应实现量化电压和通过量子霍尔效应实现量化电阻的实际实现并没有改变,但现在结果直接与基本电荷 e 和普朗克常数 h 的固定值组合有关。利用欧姆定律,这也可以实现量化电流。但新的 SI 还允许直接直观地实现电流:通过重复转移单个量化电荷 e 来产生量化电流。近年来,通过精确的单电子泵浦在实现这种实现方面取得了巨大进展。比较这些不同实现产生的电流,即关闭所谓的量子计量三角,将允许测试电量子计量的基础。在我的演讲中,我将介绍电量子计量和新 SI,回顾单电子泵送的进展并讨论量子计量三角的现状。
1理论物理学,巴斯克大学(UPV/EHU),西班牙毕尔巴奥2多斯蒂亚国际物理中心(DIPC)(DIPC),西班牙圣塞巴斯蒂,西班牙3号,3 ikerbasque 3 Ikerbasque,Basque,Basque,Basque,Basque,Basque,Basque Science,Spain 4 Wigner研究中心4 Wigner研究中心
2019 年是计量学的重要一年。国际单位制于当年 5 月 20 日世界计量日进行了修订 [1]。2020 年会带来什么?在本文中,我们讨论了 2020 年值得关注的五项有希望的进展。首先,我们描述使用电磁波测量体积和气体压力。这些测量依赖于真空中光速的固定值 c 0 。然后我们转向普朗克常数 h 。可以从 h 获得质量和力的 SI 可追溯测量值。自从定义从千克国际原型的质量变为普朗克常数的值以来,质量计量学正在取得有趣的发展。将基本电荷 e 添加到 h 中,可以通过量子霍尔效应进行电阻和阻抗测量。自 2004 年发现石墨烯以来,这一直是一个非常有趣的领域。最后一节解释了如何使用电阻器上的噪声来测量热力学温度。正如将要展示的,温度可以与玻尔兹曼常数 k B 和普朗克常数的商相关联。虽然很难与去年计量学的兴奋相媲美,但我们相信,2020 年基础计量学将迎来有趣而令人兴奋的发展。
定量磁共振成像 (qMRI) 使用缺乏标准化,限制了人工智能 (AI) 在患者图像分析中的引入,以及临床试验中生成的多中心数据的组合以确定成功的治疗方法。最接近的适用国际标准是 IEC 60601-2-33 医用电气设备 - 第 2-33 部分:医疗诊断用磁共振设备基本安全和基本性能的特殊要求。但是,这没有必要的措施来实现标准化,也没有引入 qMRI 图像可比性。引入参考资料及其使用的最佳实践,以规范标准为基础,将迈出实现临床中心之间更大 qMRI 可比性的第一步。
定量磁共振成像 (qMRI) 缺乏标准化,限制了人工智能 (AI) 在患者图像分析中的应用,以及临床试验中生成的多中心数据的组合,从而无法确定成功的治疗方法。最接近的适用国际标准是 IEC 60601-2-33 医用电气设备 - 第 2-33 部分:医疗诊断用磁共振设备基本安全和基本性能的特殊要求。然而,这还不具备实现标准化或引入 qMRI 图像可比性的必要措施。在规范标准的支持下,引入参考资料及其使用的最佳实践将迈出实现临床中心之间 qMRI 可比性的第一步。
定量磁共振成像 (qMRI) 使用缺乏标准化,限制了人工智能 (AI) 在患者图像分析中的引入,以及临床试验中生成的多中心数据的组合以确定成功的治疗方法。最接近的适用国际标准是 IEC 60601-2-33 医用电气设备 - 第 2-33 部分:医疗诊断用磁共振设备基本安全和基本性能的特殊要求。但是,这没有必要的措施来实现标准化,也没有引入 qMRI 图像可比性。引入参考资料及其使用的最佳实践,以规范标准为基础,将迈出实现临床中心之间更大 qMRI 可比性的第一步。
定量磁共振成像 (qMRI) 缺乏标准化,限制了人工智能 (AI) 在患者图像分析中的应用,以及临床试验中生成的多中心数据的组合,从而无法确定成功的治疗方法。最接近的适用国际标准是 IEC 60601-2-33 医用电气设备 - 第 2-33 部分:医疗诊断用磁共振设备基本安全和基本性能的特殊要求。然而,这还不具备实现标准化或引入 qMRI 图像可比性的必要措施。在规范标准的支持下,引入参考资料及其使用的最佳实践将迈出实现临床中心之间 qMRI 可比性的第一步。
定量磁共振成像 (qMRI) 缺乏标准化,限制了人工智能 (AI) 在患者图像分析中的应用,以及临床试验中生成的多中心数据的组合,从而无法确定成功的治疗方法。最接近的适用国际标准是 IEC 60601-2-33 医用电气设备 - 第 2-33 部分:医疗诊断用磁共振设备基本安全和基本性能的特殊要求。然而,这还不具备实现标准化或引入 qMRI 图像可比性的必要措施。在规范标准的支持下,引入参考资料及其使用的最佳实践将迈出实现临床中心之间 qMRI 可比性的第一步。
传统的自动化生产系统具有有限的计量可追溯性,难以满足工业 4.0 和未来工厂 (FoF) 对可重构制造方法的需求。解决此问题的一种方法是从僵化的自动化方案转换为基于灵活装配/制造范例并与智能规划/协调算法相链接的信息物理方案,从而有效地提供自我自动化。大容量计量 (LVM) 仪器使测量数据能够为虚拟工厂和虚拟机模型提供数字化接口,通过提供基于计量的虚拟参考框架(“度量”)将现实世界与 AI 联系起来。先前的研究(例如 EMPIR 项目 17IND03 LaVA,以及 17IND14 Met4FoF 和 EMRP 项目 LUMINAR)推动了 LVM 的重大进展。然而,具有严重视线约束和可重构性的极其恶劣和多变的工业环境(例如 AGV、机器人)仍然带来了重大挑战,例如来自 LVM 工具的低延迟、低不确定性和高数据速率的动态 3D 参考信息。物联网技术的同步进步要求将其集成和潜在优势纳入任何依赖复杂计算的研究领域。
会议法律和法规委员会(见第 C 段)应会议的要求或主动采取行动,在美国国家标准与技术研究所 (NIST) 的技术援助下,准备对会议先前通过的材料提出修正或补充建议。然后,这些修正或补充将提交给整个会议,由度量衡官员和相关制造商、行业、消费者团体和其他方面的代表进行讨论。最终,委员会的提案(可能已在会场上修改)将由度量衡官员进行表决。根据 1978 年 NCWM 采用的投票程序,会议通过的所有问题都需要全国共识。如果没有至少多数州代表和至少多数其他投票代表赞成通过,统一法律或法规将不会通过。