生物聚合物是有前途的材料,如果其低机械和生物活性特性都得到改善,则可以在骨骼替代应用中广泛使用。在这方面,这项研究的主要目的是改善机械和生物学特性,除了改善光学和电气特性以适合于裂缝愈合目的使用。因此,在这项研究中,将一批聚(乙烯基醇; PVA)和生物学提取的羟基磷灰石(BHA)机械地以(70:30 vol。%)为准。然后,将氧化镁(MGO)和碳化硅(SIC)添加到该批次中,其体积百分比不同,在120°C时加热。测量了物理,机械,光学和电气性能。此外,通过将它们浸入模拟的体液(SBF)中,然后通过扫描电子显微镜(SEM)进行检查,从而评估了这些样品在其表面上形成磷灰石层的能力。获得的结果澄清说,由于这些添加剂的添加剂,改善了微度,压缩强度,Young的模量,纵向模量,纵向模量,大量模量和剪切模量的机械性能。也观察到,BHA和MGO纳米颗粒的存在增强了准备样品的生物活性,光学和电性能。获得的结果令人鼓舞,这项研究的目的已成功实现。
摘要 - 在这项工作中,我们开发了一种便携式光纤传感器,其特征在于其对电磁干扰(EMI)的稳健免疫力(EMI),卓越灵敏度和对磁场的实时监测功能。该传感器在测量增加和减少磁场时表现出显着的准确性和稳定性。为了提高传感器的性能,我们使用组合制造系统(CMS)设计,模拟和制造了锥形直径为40 µm的锥形纤维结构。此外,我们采用了一种称为磁石墨烯(MGO)的2-D材料来固定锥形光纤传感器的传感区域。该传感器背后的关键原理在于经历磁场时MGO的折射率(RI)变化,从而导致传输光谱的波长移动。通过严格的实验,我们彻底评估了传感器在检测增加和减少磁场时的测量范围,灵敏度和准确性。因此,我们确定光纤磁场传感器的灵敏度为0.9和1.6 pm/mt,用于增加5-600 mt的宽测量范围内的磁场。该传感器在各种应用中都有很大的希望,包括医疗测试和科学测量,这是由于其出色的精度,紧凑的大小和无创测量能力。此外,其稳定性和非接触式测量特征将其定位为可控核融合,太空探索和地球物理研究的有价值工具。
关于 Baymag Baymag 是加拿大唯一的氧化镁制造商,总部位于不列颠哥伦比亚省 Radium 附近世界上最纯净的碳酸镁矿床之一,并在位于艾伯塔省 Exshaw 的工厂采用最先进的加工操作。40 多年来,Baymag 一直是全球领先的氧化镁 (MgO) 产品供应商。依赖我们产品的行业包括纸浆和造纸、动物饲料、建筑产品和各种环境市场,包括石油和天然气中的水处理应用、关键矿物和稀土工艺。
术语 TiN:氮化钛 MgO:氧化镁 TMN:过渡金属氮化物 FCC:面心立方 B1:岩盐结构 UHV:超高真空 TEM:透射电子显微镜 STEM:扫描透射电子显微镜 HAADF:高角度环形暗场 DFT:密度泛函理论 MEAM:改进的嵌入原子方法 XRD:X 射线衍射 ToF-ERDA:飞行时间弹性反冲检测分析 BF:明场 FIB:聚焦离子束 SEM:扫描电子显微镜 FFT:快速傅里叶变换 DOS:态密度 FWHM:半峰全宽 GSFE:广义堆垛层错能 OP:重叠布居
单晶金属纤维的成本效益,多功能和快速沉积对于从催化,等离子体,电化学和光电子学到模板,外延底物和集成纳米制造的广泛应用至关重要。高晶体质量通常意味着低增长率,这使得通过常规方法实现超过1 µm的厚度的挑战。我们显示了MGO底物上表面纳税单晶Au,Ag和Cufim的宽敞空间升华。我们在小于1H的厚度中证明了10 µm的厚度,同时在一系列低索引晶体膜方向上保持低5 nm RMS的表面粗糙度。我们表明,可以通过基于“视线”升华的简单模型来捕获结果,该模型可作为预测工具,并提供了讨论更广泛的潜力以及这种方法的局限性的基础。
董事会已确定 2023 年 4 月 14 日为确定有权收到年度会议通知并在年度会议上投票的股东的记录日期。公司的股票和转让簿不会关闭。截至记录日期的普通股和投票优先股的记录持有人将有权对议程第 4 项和第 5 项中列出的拟议公司行动进行投票。如果您不打算参加年度会议,您可以在 http://pldt.com/investor-relations/shareholder-information/latest-shareholders'-news 下载代理表格的副本。请打印、执行并将填妥的代理表格交回至公司秘书,地址:马卡蒂市 LEGASPI 街与 DELA ROSA 街交界处 PLDT MGO 大厦 9 楼,或者您可以将填妥的代理表格(PDF 格式)发送至 pldtshareholderservices@pldt.com.ph 。提交代理表格的截止日期为 2023 年 6 月 6 日。
对具有滑移效应的不规则尺寸薄片上的 3D MHD 非线性辐射混合纳米流体流动进行了数值研究。混合纳米流体由嵌入甲醇或甲醇 (MA) 中的氧化铜 (CuO) 和氧化镁 (MgO) 纳米颗粒组成。使用相似性将控制 PDE 改为 ODE,并使用射击方案获得数值解。通过图表和数值解释分析和反映了物质因素对传输现象的作用。同时给出了 CuO-MA 纳米流体和 CuO-MgO/MA 混合纳米流体的解。结果确定混合纳米流体和纳米流体的温度和流动边界层厚度并不是唯一的。与 CuO-MgO/MA 混合纳米流体相比,CuO-MA 纳米流体的传热作用较高。这得出结论,CuO-MgO 组合是一种良好的绝缘体。
由于其独特的属性和应用程序而产生的利息。此外,它们已在广泛的应用中应用,包括催化,储能和生物医学工程。3,4许多先前的研究报道了Ag 2 O /TiO 2,5 WO 3 /ZnO NC,6个SNO 2 /MGO NCS,在抗菌中使用2 O 3 /ZnO NCS 8中的7中,以及由于其出色的特性而进行的抗癌应用。此外,通过添加另一种材料(石墨烯(GO),氧化石墨烯(RGO)(RGO)和聚合物),可以通过改进的合成过程来增强这些NC的物理化学特性。不同的方法,用于制备和生物医学的应用,以减少氧化石墨烯(RGO)的不同金属氧化物NP,以提高其物理化学特性。9,10,例如水果提取物(凤凰
本工作利用溶液浇铸工艺制备了不同重量比(0、2、4、6、8、10 wt%)的氧化镁、氧化石墨烯聚邻苯二胺(GO-MgO-PoPDA)增强的纯(PVA)聚合物薄膜。研究了纳米粒子氧化镁(MgO)和氧化石墨烯(GO)的不同重量比对纳米复合薄膜介电性能的影响。使用 FTIR、SEM、X-RAY 对纳米复合材料进行表征。介电性能结果表明,随着(GO-MgO-PoPDA)纳米粒子的添加、施加电场频率的增加和粒子含量的增加,制备的薄膜的交变电导率值增大,而介电常数值随(GO-MgO-PoPDA)纳米粒子含量的增加而增大,但随频率的增加而降低。而当添加纳米粒子且随着频率的增加而制备的薄膜的介电损耗系数降低。