表格列表........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... xi
miRNA感应指南RNAS ANTONIO GARCIA-GUERRA 1,2,3,4 *,CHAITRA SATHYAPRAKASH 5,OLIVIER G.DE JONG 6,WOOI F. LIM 2,4 Turberfield 1,3,Matthew J.A.木材2,4,Carlo Rinaldi 2,4 *。1。牛津大学牛津大学物理系,英国。2。牛津大学儿科学系,牛津大学,英国。 3。 卡夫利纳米科学研究所,牛津大学,多萝西·克劳特·霍奇金大楼,牛津,英国。 4。 发展和再生医学研究所(IDRM),IMS-Tetsuya Nakamura大楼,旧路校园,牛津,英国。 5。 国家神经科学研究所分子治疗系,国家牛津大学儿科学系,牛津大学,英国。3。卡夫利纳米科学研究所,牛津大学,多萝西·克劳特·霍奇金大楼,牛津,英国。4。发展和再生医学研究所(IDRM),IMS-Tetsuya Nakamura大楼,旧路校园,牛津,英国。5。国家神经科学研究所分子治疗系,国家
1圣约瑟夫医院Bochum,外科诊所,鲁尔 - 大学Bochum,Gudrunstr。56,44791 Bochum,德国; britta.majchrzak-stiller@ruhr-uni-bochum.de(B.M.-S.); marie.buchholz-a7y@rub.de(M.B. ); vanessa.mense@studmail.w-hs.de(v.m。 ); johanna.strotmann@ruhr-uni-bochum.de(J.S. ); ilka.peters@rub.de(i.p. ); lea.skrzypczyk@klinikum-bochum.de(L.S. ); waldemar.uhl@ruhr-uni-bochum.de(W.U. ); chris.braumann@evk-ge.de(C.B. ); philipp.hohn@ruhr-uni-bochum.de(P.H.) 2 Kirrberger Str。 100,66424德国霍姆堡; louise.massia@hotmail.fr(L.M.M. ); Mathias.wagner@uks.eu(M.W。) 3大学医院Essen,桥梁肿瘤疗法研究所,西德肿瘤中心Essen,Hufelandstr。 55,45147德国埃森; sven-thorsten.liffers@uk-essen.de 4 Crbip,Pasteur Institut Pasteur,ÉparisUniversit,Cite,25 Rue du Roux Roux Roux Roux,75015,法国巴黎75015; fay.betsou@pasteur.fr 5 Ibbl(卢森堡的综合生物库),1,Lue Louis Rech,L-3555,L-3555 Dudelange,卢森堡; wim.ammerlaan@ibbl.lu 6 Sciomics GmbH,Karl-Landsteiner Str。 6,69151德国海德堡; ronny.schmidt@sciomics.de(R.S. ); Christoph.schroeder@sciomics.de(C.S.) 7,Munckelstr大学Duisburg-Essen的Evk Gelsenkirchen将军,内脏和血管外科。 27,45879 Gelsenkirchen,德国 *通信:Fernado13984@yahoo.gr.gr†联合首先作者。 •共同延迟作者。56,44791 Bochum,德国; britta.majchrzak-stiller@ruhr-uni-bochum.de(B.M.-S.); marie.buchholz-a7y@rub.de(M.B.); vanessa.mense@studmail.w-hs.de(v.m。); johanna.strotmann@ruhr-uni-bochum.de(J.S.); ilka.peters@rub.de(i.p.); lea.skrzypczyk@klinikum-bochum.de(L.S.); waldemar.uhl@ruhr-uni-bochum.de(W.U.); chris.braumann@evk-ge.de(C.B.); philipp.hohn@ruhr-uni-bochum.de(P.H.)2 Kirrberger Str。 100,66424德国霍姆堡; louise.massia@hotmail.fr(L.M.M. ); Mathias.wagner@uks.eu(M.W。) 3大学医院Essen,桥梁肿瘤疗法研究所,西德肿瘤中心Essen,Hufelandstr。 55,45147德国埃森; sven-thorsten.liffers@uk-essen.de 4 Crbip,Pasteur Institut Pasteur,ÉparisUniversit,Cite,25 Rue du Roux Roux Roux Roux,75015,法国巴黎75015; fay.betsou@pasteur.fr 5 Ibbl(卢森堡的综合生物库),1,Lue Louis Rech,L-3555,L-3555 Dudelange,卢森堡; wim.ammerlaan@ibbl.lu 6 Sciomics GmbH,Karl-Landsteiner Str。 6,69151德国海德堡; ronny.schmidt@sciomics.de(R.S. ); Christoph.schroeder@sciomics.de(C.S.) 7,Munckelstr大学Duisburg-Essen的Evk Gelsenkirchen将军,内脏和血管外科。 27,45879 Gelsenkirchen,德国 *通信:Fernado13984@yahoo.gr.gr†联合首先作者。 •共同延迟作者。2 Kirrberger Str。100,66424德国霍姆堡; louise.massia@hotmail.fr(L.M.M.); Mathias.wagner@uks.eu(M.W。)3大学医院Essen,桥梁肿瘤疗法研究所,西德肿瘤中心Essen,Hufelandstr。55,45147德国埃森; sven-thorsten.liffers@uk-essen.de 4 Crbip,Pasteur Institut Pasteur,ÉparisUniversit,Cite,25 Rue du Roux Roux Roux Roux,75015,法国巴黎75015; fay.betsou@pasteur.fr 5 Ibbl(卢森堡的综合生物库),1,Lue Louis Rech,L-3555,L-3555 Dudelange,卢森堡; wim.ammerlaan@ibbl.lu 6 Sciomics GmbH,Karl-Landsteiner Str。6,69151德国海德堡; ronny.schmidt@sciomics.de(R.S.); Christoph.schroeder@sciomics.de(C.S.)7,Munckelstr大学Duisburg-Essen的Evk Gelsenkirchen将军,内脏和血管外科。27,45879 Gelsenkirchen,德国 *通信:Fernado13984@yahoo.gr.gr†联合首先作者。 •共同延迟作者。27,45879 Gelsenkirchen,德国 *通信:Fernado13984@yahoo.gr.gr†联合首先作者。•共同延迟作者。
摘要:众所周知,microRNA-21 (miR-21) 靶向磷酸酶和张力蛋白同源物 (PTEN),促进癌症的上皮-间质转化 (EMT) 和耐药性。最近的证据表明,PTEN 激活其假基因衍生的长链非编码 RNA PTENP1,进而抑制 miR-21。然而,PTEN、miR-21 和 PTENP1 在 DNA 损伤反应 (DDR) 中的动态仍不清楚。因此,我们通过整合来自各种癌症的已发表文献提出了一个动态布尔网络模型。我们的模型与乳腺癌、肝细胞癌 (HCC) 和口腔鳞状细胞癌 (OSCC) 的实验结果显示出良好的一致性,阐明了 DDR 激活如何从 S 期过渡到 G2 检查点,从而导致一系列细胞反应,例如细胞周期停滞、衰老、自噬、细胞凋亡、耐药性和 EMT。模型验证强调了 PTENP1、miR-21 和 PTEN 在调节 EMT 和耐药性方面的作用。此外,我们的分析揭示了九个新的反馈回路,其中八个是正反馈回路,一个是负反馈回路,由 PTEN 介导,与 DDR 细胞命运决定有关,包括与耐药性和 EMT 相关的通路。我们的工作为研究 DDR 后的细胞反应提供了一个全面的框架,强调了在癌症治疗中靶向 PTEN、miR-21 和 PTENP1 的治疗潜力。
背景:胰腺癌通常在晚期才被诊断出来,而早期诊断胰腺癌由于症状不典型且缺乏可用的生物标志物而十分困难。方法:我们对来自 14 家医院的 212 个胰腺癌患者样本和 213 个非癌性健康对照样本进行了全面的血清 miRNA 测序。我们将胰腺癌和对照样本随机分为两组:训练组 (N = 185) 和验证组 (N = 240)。我们创建了将自动机器学习与 100 种高表达 miRNA 及其与 CA19-9 的组合相结合的集成模型,并在独立验证组验证了模型的性能。结果:100 个高表达 miRNA 和 CA19-9 组合的诊断模型可以高精度区分胰腺癌和非癌症健康对照(曲线下面积 (AUC),0.99;灵敏度,90%;特异性,98%)。我们在独立的无症状早期(0-I 期)胰腺癌队列中验证了高诊断准确性(AUC:0.97;灵敏度,67%;特异性,98%)。结论:我们证明 100 个高表达 miRNA 及其与 CA19-9 的组合可以作为胰腺癌特异性和早期检测的生物标志物。
1人类遗传学研究所,分区表观遗传学与代谢,德国吕贝克大学; 2大脑,行为和代谢中心(CBBM),德国吕贝克大学吕贝克大学; 3德国慕尼黑的德国糖尿病研究中心(DZD); 4糖尿病的研究部门神经生物学,糖尿病与肥胖研究所,德国慕尼黑的赫尔姆霍兹中心; 5德国吕贝克大学吕贝克大学实验内分泌学研究所; 6大学医院Schleswig-Holstein的实验与临床药理学研究所,德国基尔校区; 7德国汉堡大学医学中心汉堡大学医学中心一般,内脏和胸外手术系; 8德国慕尼黑慕尼黑技术大学TUM医学院神经生物学主席; 9英国考文垂的考文垂大学和沃里克郡大学医院; 10分子细胞生物学,理论医学研究所,医学院,奥格斯堡大学,德国奥格斯堡大学
背景:这项研究旨在研究miR-497-5p在胃癌(GC)及其可能的机制中的表达和生物学作用。方法:进行实时定量PCR(RT-QPCR),以检测GC和正常组织中的miR-497-5p,以及GC细胞系与正常的胃粘膜细胞(GES-1)(GES-1)。通过计数KIT-8(CCK8)测定和溴化乙锭(EDU)测定法测量了miR-497-5p过表达对增殖的影响。流式细胞仪用于评估细胞周期。分别通过刮擦分析和Transwell分析评估迁移和入侵。MiR-497-5p的基因靶标使用与MirtarPathway数据库结合使用的“ Multimir” R软件包。,然后使用Luciferase Reporter实验来评估GC细胞系中miR-497-5p Mimics的ERBB2活性。此外,还进行了功能实验,以验证miR-497-5p /erbb2对GC细胞表型的影响。结果:与正常组织和粘膜细胞相比,GC组织和GC细胞系中miR-497-5p降低。miR-497-5p显着降低了增殖,迁移和侵袭能力,胃癌细胞的凋亡比升高。生物信息学表明,ERBB2可能是miR-497-5p双酸酶酶报告基因实验的潜在靶标,表明它不良调节的ERBB2 3'UTR荧光素酶活性。与正常组织和细胞相比,GC组织和细胞中ERBB2的表达明显更高。胃癌细胞中ERBB2的过表达显着降低了miR-497-5p对GC细胞恶性行为的抑制作用。结论:MiR-497-5p在GC组织和细胞中显着下调,这通过靶向ERBB2抑制了GC细胞的恶性特征。
杰斐逊数字共享将这篇文章带给您免费和开放访问。Jefferson Digital Commons是Thomas Jefferson大学教学中心(CTL)的服务。Commons是杰斐逊书籍和期刊的展示,经过同行评审的学术出版物,大学档案馆的独特历史收藏以及教学工具。Jefferson Digital Commons允许研究人员和感兴趣的读者在世界任何地方学习并与Jefferson奖学金保持最新状态。本文已被杰斐逊数字共享的授权管理员接受,以纳入药理学和实验治疗学院的教师论文。有关更多信息,请联系:jeffersondigitalcommons@jefferson.edu。
背景:帕金森氏病(PD)是一种神经退行性疾病,其为特征,其特征在于黑质Nigra Pars Compacta(SNPC)中多巴胺能神经元的丧失。这项研究的重点是破译MicroRNA(MIR)-101A-3P在PD神经元损伤及其调节机制中的作用。方法:我们通过腹膜内注射1-甲基4-苯基1、2、3、6-四氢吡啶(MPTP)构建了PD的小鼠模型,并使用了1-甲基-4-苯基 - 苯基吡啶二吡啶(MPP +)来处理神经2A细胞以构建神经-2A细胞以构建一个模型。通过游泳测试和牵引测试评估小鼠的神经功能障碍。QRT-PCR用于检查小鼠脑组织和Neuro-2a细胞中的miR-101a-3p表达和Rock2表达。蛋白质印迹,以检测小鼠脑组织和神经2A细胞中α-突触核蛋白蛋白和岩石2的表达。通过双雷酸酶报告基因测定法测定miR-101a-3p和Rock2之间的靶向关系。通过流式细胞仪评估神经2a细胞的凋亡。结果:在PD小鼠的脑组织和MPP +治疗的神经2A细胞的脑组织中发现了低miR-101a-3p表达和高岩石表达; PD小鼠的神经系统疾病降低,MPP +治疗后神经2A细胞的凋亡增加,这两者都伴随着α-突触核蛋白蛋白的积累增加。,改善了PD小鼠的神经功能,并减少了由MPP +诱导的神经2A细胞的凋亡,并减少了α-核蛋白蛋白的积累; Rock2的过表达抵消了miR-101a-3p的保护作用。另外,Rock2被确定为miR-101a-3p的直接靶标。结论:miR-101a-3p可以通过抑制Rock2表达来减少PD小鼠中神经元细胞凋亡和神经缺陷,这表明miR-101a-3p是PD的有希望的治疗靶标。
引言类风湿关节炎(RA)是一种常见的自身免疫性疾病,其特征是软骨和骨骼的持续关节炎症和破坏(1,2)。越来越多的证据表明,MES-盖膜干细胞(MSC)具有与自身免疫性和炎症性疾病(包括自身免疫性关节炎)作斗争的潜力(3-10)。但是,临床实践中出现了一些问题。例如,患者的MSC通常功能失调,使同种异体MSC转移成为唯一的选择,这可能会引发免疫排斥。此外,患者转移的MSC的长期细胞命运仍然在很大程度上不清楚。也有常见的副作用,包括细胞毒性和肿瘤发生(11-13)。有效的免疫治疗取决于精确的靶向和有效的免疫调节。当前涉及免疫抑制剂的RA治疗方案通常需要高剂量的药物以在