Xiao Mi, Matteo Ippoliti, Chris Quintana, Ami Greene, Zijun Chen, Jonathan Gross, Frank Arute, Kunal Arya, Juan Atalaya, Ryan Babbush, Joseph C. Bardin, Joao Basso, Andreas Bengtsson, Alexander Bilmes, Alexandre Bourassa, Leon Brill, Michael Broughton, Bob Broughley, David Burkett, Bull, A.B. nell, Benjamin Chiaro, Roberto Collins, William Courtney, Dripto Debroy, Sean Demura, Alan R. Derk, Andrew Dunsworth, Daniel Eppens, Catherine Erickson, Edward Farhi, Austin G. Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Matthew P. Harrigan, Sean D. Harring, Hilton, Hoy, T. A. , Ashley Huff, William J. Huggins, L. B. Ioffe, Sergei V. Isakov, Justin Iveland, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Tanuj Khattar, Seon Kim, Alexei Kitaev, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa, David Landho, Joel, Lee, Lee, Lee Lucero, Orion Martin, Jarrod R. McClean, Trevor McCourt, Matt McEwen, Kevin C. Miao, Masoud Mohseni, Shirin Montazeri, Wojciech Mruczkiewicz, Ofer Naaman, Matthew Neeley, Charles Neill, Michael Newman, Murphy Yuezhen Niu, Thomas E. O'Brien, Alex O'Brien, Othov, Andre, Pethor, Andre and Pat. Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vladimir Shvarts, Yuan Su, Doug Strain, Marco Szalay, Matthew D. Trevithick, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Adam Zalcman, Hartmut Neven, Sergio Vaxo, Kelly, Kelly, Julian and Julian n, S. L. Sondhi, Roderich Moessner, Kostyantyn Kechedzhi, Vedika Khemani & Pedram Roushan
Xiao Mi 1.11 , Matteo Ippoliti 2.11 , Chris Quintana 1 , Ami Greene 1 , Zijun Chen 1 , Jonathan Gross 1 , Frank Arute 1 , Kunal Arya 1 , Juan Atalaya 1 , Ryan Babbush 1 , Joseph C. Bardin 1.3 , Joao Basso 1 , Andreas Bengtsson 1 , Alexander Bilmes 1 , Alexandre Bourassa 1.4 , Leon Brill 1 , Michael Broughton 1 , Bob B. Buckley 1 , David A. Buell 1 , Brian Burkett 1 , Nicholas Bushnell 1 , Benjamin Chiaro 1 , Roberto Collins 1 , William Courtney 1 , Dripto Debroy 1 , Sean Demura 1 , Alan R. Derk 1 , Andrew Dunsworth 1 , Daniel Eppens 1 , Catherine Erickson 1 , Edward Farhi 1 , Austin G. Fowler 1 , Brooks Foxen 1 , Craig Gidney 1 , Marissa Giustina 1 , Matthew P. Harrigan 1 , Sean D. Harrington 1 , Jeremy Hilton 1 , Alan Ho 1 , Sabrina Hong 1 , Trent Huang 1 , Ashley Huff 1 , William J. Huggins 1 , L. B. Ioffe 1 , Sergei V. Isakov 1 , Justin Iveland 1 , Evan Jeffrey 1 , Zhang Jiang 1 , Cody Jones 1 , Dvir Kafri 1 , Tanuj Khattar 1 , Seon Kim 1 , Alexei Kitaev 1 , Paul V. Klimov 1 , Alexander N. Korotkov 1,5 , Fedor Kostritsa 1 , David Landhuis 1 , Pavel Laptev 1 , Joonho Lee 1.6 , Kenny Lee 1 , Aditya Locharla 1 , Erik Lucero 1 , Orion Martin 1 , Jarrod R. McClean 1 , Trevor McCourt 1 , Matt McEwen 1.7 , Kevin C. Miao 1 , Masoud Mohseni 1 , Shirin Montazeri 1 , Wojciech Mruczkiewicz 1 , Ofer Naaman 1 , Matthew Neeley 1 , Charles Neill 1 , Michael Newman 1 , Murphy Yuezhen Niu 1 , Thomas E. O'Brien 1 , Alex Opremcak 1 , Eric Ostby 1 , Balint Pato 1 , Andre Petukhov 1 , Nicholas C. Rubin 1 , Daniel Sank 1 , Kevin J. Satzinger 1 , Vladimir Shvarts 1 , Yuan Su 1 , Doug Strain 1 , Marco Szalay 1 , Matthew D. Trevithick 1 , Benjamin Villalonga 1 , Theodore White 1 , Z. Jamie Yao 1 , Ping Yeh 1 , Juhwan Yoo 1 , Adam Zalcman 1 , Hartmut Neven 1 , Sergio Boixo 1 , Vadim Smelyanskiy 1 , Anthony Megrant 1 , Julian Kelly 1 , Yu Chen 1 , S. L. Sondhi 8,9 , Roderich Moessner 10 ,
会议记录宾夕法尼亚大学受托人执行委员会的虚拟会议于2024年7月31日上午11:02通过Zoom举行。Trustees participating : Bonnie Miao Bandeen, Michael L. Barrett, David S. Blitzer, James G. Dinan, Osagie O. Imasogie, J. Larry Jameson, Marc F. McMorris, Dhananjay M. Pai, Julie Beren Platt, Ramanan Raghavendran, Alan D. Schnitzer Administrators and other guests participating : Antony Appleyard, Holly Auer, Neema Baddam, Sarah Banet-Weiser, Jackson Betz, Laura Brennan, Pierce Buller, Craig R. Carnaroli, Michael Citro, Mary Correll, Russell Di Leo, Mark Dingfield, Lee J. Dobkin, Jonathan Epstein, Dmitriy Fedorenko, Alisha George, Fran Grady, Richard Herendeen, Scott Hoeflich, John L. Jackson, Jr., Brianne Jeffrey, Antoine Jones, Michelle Lai, Trevor C. Lewis, Stephen J. MacCarthy, Kevin Mahoney, Chris Masotti, Alison McGhie, Medha Narvekar, Laura Nickrosz, Laura Perna, Lizann Boyle Rode, Alexander Romango, Paul Rothenberger, Michael Scales, Tom Sontag, John Swartley,Corey Wallace,Denene Wambach,Beth A. Winkelstein,Kevin Zhu,Seth Zweifler在会议期间通过的决议的完整文本已附加到本文件中,并被视为这次会议正式记录的一部分。主席报告主席拉马南·拉格文德兰(Ramanan Raghavendran)致电会议命令并欢迎与会者。Raghavendran先生说,会议的目的是考虑一项关于批准资产转让和知识产权转让给富兰克林Biolabs和Gemma Biothapeutics的决议,并补充说,决议的全文可以在会议材料中找到。他说,宾夕法尼亚医学委员会执行委员会已审查并批准了此行动,现在需要受托人的批准。他将会议移交给了临时总统拉里·詹姆森(Larry Jameson),以介绍这一行动。Jameson博士感谢Raghavendran先生,并介绍了宾夕法尼亚大学卫生系统临时执行副校长Jonathan A. Epstein,并介绍了Perelman医学院的临时院长,以总结解决方案。爱泼斯坦博士很高兴为董事会提供有关Penn Medicine的基因疗法计划的令人兴奋的新篇章的信息,称为GTP。他报告说,在吉姆·威尔逊教授的领导下,在过去的几十年中,GTP推动了基因治疗领域的重大进步,通过发现和发展基因 -
1。liu,Y。等人,金属硫化物的协调性硫化物与相变的合成增强了对抗生素耐药细菌的反应性。高级功能材料,2023。33(13):p。 2212655。2。Liu,C。等人,红色发射碳点超氧化物歧化酶纳米酶,用于生物成像和改善急性肺损伤。高级功能材料,2023。33(19):p。 2370116。3。li,Q。高级功能材料,2023年:p。 2214826。4。lyu,M。等人,个性化的一氧化碳仿生型纳米纳米纳米纳米,用于富铁的增强闪光灯放射免疫疗法。高级功能材料,2023年:p。 2306930。5。Wang,Z。等人,一种通过溶栓和神经保护作用进行凝血酶激活的肽纳米酶,用于弥补缺血性中风。高级材料,2023年:p。 E2210144。6。li,Y。等,间隙连接蛋白的消融提高了纳米介导的催化/饥饿/温度温度光热治疗的效率。高级材料,2023。35(22):p。 2210464。7。fan,H。等,表面配体工程弦丁氏素纳米素优于辣根过氧化物酶,可增强免疫测定。高级材料,2023年:p。 2300387。8。li,J。等人,基于CO的纳米合法分析:跨越化学,生物医学和环境科学的进步。9。高级材料,2023年:p。 2307337。Wang,D。等人,使用高贵的金属孢子蛋白来设计鼻咽癌的靶向催化疗法,以锻炼强大的和高度活跃的单原子纳米化疗法。高级材料,2023年:p。 2310033。10。Chen,J。等人,锰-CPG纳米复合材料会整合ROS诱导的细胞凋亡以及刺激激活和辅助效果的免疫反应,以消除肿瘤和预防。高级治疗学,2023年。6(3):p。 2200175。11。Cheng,M。等人,在食道鳞状癌的疗法中的进步。高级治疗学,2023年:p。 2200251。12。li,Z。等,使用亚稳态的硫化铁热敏感水凝胶的双相转化策略增强了中耳炎培养基治疗。高级治疗学,2023年。6(8):p。 2300073。13。Miao,X。等人,双向调节病毒和细胞性铁的硫化物针对流感病毒。高级科学,2023。10(17):p。 E2206869。14。fang,L。等人,蛋白质 - 含硒的硒可通过表观遗传调节诱导T(8; 21)白血病细胞分化。高级科学,2023年:p。 2300698。15。shi,Y。等人,从衰老中拯救核细胞通过双重
NOTES: MOE, Ministry of Education; NSFC, National Science Foundation of China; SAFEA, State Administration of Foreign Expert Affairs; CLGCTW, Central Leading Group for the Coordination of Talent Work. (a) The 100 Talents Plan initially included part-time participants, but the CAS changed this policy around 2004. Too many individuals accepted the award, but rarely appeared at the CAS (Hao Xin, 2006). (b) “Two-decade Development of the Hundred Talent Program” (Chinese Academy of Sciences, n.d.) reported that 90 percent of the 2,145 total awardees were from abroad, yielding 1,930 program participants. (c) Liu Bin, Qiao Lili, and Zhang Yi, “An Analysis of the Funding Status and Achievement Impact of National Science Fund for Distinguished Young Scholars in the Life Sciences” (in Chinese), Science Funds in China , No. 2 (2016): 122−131. (d) The Spring Light Program brought more than 300 delegations to China by the end of 2009. These consisted of 15,000 overseas mainlanders who established more than 1,000 projects 赵峰 , 苗丹国 , 魏祖 钰 , 程希 (Zhao Feng, Miao Danguo, Wei Zuyu, Cheng Xi), eds., 留学大事概 览 , 1949–2009 (An Overview of Overseas Study, 1949–2009). 北京: 现代出版社 , 2010, 86. From 2006 to 2018, the Chunhui Award ( 春 晖杯 ) had shortlisted 2,528 projects, of which 448 (17 percent) relocated to China. By 2023, 3,424 “excellent” projects had been selected. See Andrew Spear, “Serve the Motherland while working overseas,” in William C. Hannas and Didi Kirsten Tatlow, eds., China's Quest for Foreign Technology: Beyond Espionage (London: Routledge, 2021 ) 30-31. (e) SAFEA was closed in 2018 and reconstituted under the MOST. See 2017 Budget of the Former State Administration of Foreign Experts Affairs , CSET, Washington, DC, https://cset.georgetown.edu/publication/2017-budget-of-the-former-state-administration-of-foreign-experts- affairs/. (f) The names of the 111 Program project bases are posted at https://opportunities- insight.britishcouncil.org/news/market-news/introduction-china%E2%80%99s-%E2%80%9C111- project%E2%80%9D-0 (British Council, 2017). (g) There were 4,128 TTP awardees at the end of 2014, with an additional 1,028 participants joining TTP in 2015. China's TTP has attracted 5,206 high-end oversea talents' [Zhongguo “qianrenjihua” yinjin 5206 ming haiwai gaocengci rencai], accessed March 10, 2020, http://www.gqb.gov.cn/news/2016/0107/37723.shtml. The Chinese media estimated 8,000 total TTP awardees in 2018. “Shengdu jiedu: guojia ‘qianrenjihua' rencai xiangmu shenbao” [‘In-depth interpretation: 2018 national TTP application'], accessed October 2, 2019,
摘要 。通过选择性育种而产生的优良品种对提高养殖生产力起着至关重要的作用。本研究旨在评估和建立几种印度尼西亚优良罗非鱼品种的基线遗传信息。对育种产生的四个优良尼罗罗非鱼种群进行了形态特征和遗传多样性观察,作为继续形成国家优良品种的重要基线数据。使用的四个尼罗罗非鱼品种是 Nilasa(日惹)、Sultanaa(苏加武眉)、Srikandi(苏卡曼迪)和 Larasati(克拉登)。测量的形态特征是体重 (BW)、头长 (HL)、体深 (BD)、体厚 (BT) 和标准长度 (SL)。以形态特征与标准长度、体面积 (BA) 和体体积 (BV) 的比率形式分析数据。使用的 DNA 分析是随机扩增多态性 DNA,引物为 OPA-01、OPA-05 和 OPA-16。观测参数包括种群的遗传多样性值,即等位基因多态性和杂合度值。品种间的系统发育关系用 Nei 遗传距离表示。品种对 BD/SL、BT/SL 和 HL/SL 比率值的影响存在统计学上的显著差异(P<0.05),但对 BW/SL、BA 和 BV 值的影响不显著。雄性和雌性个体之间的 BW/SL、BD/SL、BA 和 BV 参数也存在显著差异。尼拉罗非鱼的平均 BA 和 BV 值最大。杂合度值范围从尼拉罗非鱼的低(0.090)到拉拉萨蒂罗非鱼的中等(0.1227)。基因座多态性范围为 21.05% 至 34.21%。Nei 遗传距离值范围为 0.2658 至 0.4011。 Nilasa 和 Larasati 品种之间的遗传距离最近。杂合度值的波动与形态特征变异系数值的波动相似。Nilasa 和 Sultana 罗非鱼是建立优良罗非鱼种群的最佳候选者。关键词:衰退、多样性、应用、养殖、罗非鱼。介绍。罗非鱼是世界上第二大养殖鱼类,仅次于鲤鱼(Miao 等人,2020 年)。尼罗罗非鱼(Oreochromis niloticus)的水产养殖在许多国家稳步增长(El-Sayed 和 Fitzsimmons,2023 年),目前在包括印度尼西亚在内的 140 多个国家开展(Zhang 等人,2020 年)。2023 年上半年,印度尼西亚成为全球第二大罗非鱼生产国。然而,现在大部分产量都用于满足国内需求。在此期间,印度尼西亚以冷冻鱼片的形式出口了 4,700 吨罗非鱼(粮农组织,2023 年)。通货膨胀加剧、饲料成本上升和罗非鱼供应减少等预期因素可能会导致这种情况的恶化。此外,全球变暖的影响日益增大且不可否认,令人担忧,Khallaf 等人(2020 年)发现全球变暖会加速性成熟并降低生殖能力。
没有明显损伤或处于疾病早期阶段的个体(Gauthier 等人,2016 年;Mortby 等人,2018 年)。在线服务的进步使得任何有互联网连接的地区都可以为任何能够访问互联网和计算设备的个人提供评估门户。此外,认知测试已经计算机化,可以在没有管理员的情况下进行,并且与在三级认知评估中心进行的测试具有收敛效度(Brooker 等人,2020 年;Mackin 等人,2018 年;Nosheny 等人,2020 年;Papp 等人,2021 年;Perin 等人,2020 年)。在线平台增加行为评估可能会提供更多相关信息。神经精神症状 (NPS),例如激动、焦虑、冷漠、抑郁和精神病,被认为是痴呆症的核心特征,与较差的患者预后相关 (Lanctôt 等人,2017)。然而,NPS 通常可以先于认知症状出现 (Shin,2021),包括 30% 的 AD 患者 (Wise 等人,2019)。轻度行为障碍 (MBI) 是一种痴呆前神经行为综合征,其特征是老年人中 NPS 的重新出现和持续存在,代表着长期行为模式的改变 (Ismail 等人,2016)。 MBI 与淀粉样蛋白、tau、神经退化和 AD 风险基因有关 (Andrews et al ., 2018; Creese et al ., 2021 b; Gill et al ., 2021; Johans-son et al ., 2021; Lussier et al ., 2020; Matuskova et al ., 2021; Miao et al ., 2021; Naude et al ., 2020; Ruthirakuhan et al ., 2022),并且发生认知能力下降和痴呆的风险更大 (Creese et al ., 2019; Gill et al ., 2020; Ismail et al ., 2021; Matsuoka et al ., 2019; Taragano 等人,2018 年;Tsunoda 等人,2021 年;Wolfova 等人,2021 年)。将 MBI 纳入筛查可能为早期检测提供一种补充方法(Mortby 等人,2018 年)。然而,通常需要线人信息来验证该综合征,而适合通过无监督平台广泛传播的结构化评估工具最近才被开发出来。轻度行为障碍检查表 (MBI-C) 结合了线人信息,是经过验证的案例确认工具,专门为根据国际促进阿尔茨海默病研究与治疗协会-阿尔茨海默病协会 (ISTAART-AA) 制定的标准捕捉 MBI 而开发 (Creese 等人,2020 年;Ismail 等人,2017 年;Mallo 等人,2019 年;Saari 等人,2021 年)。MBI-C 被翻译成 20 多种语言,还可以更广泛地获取在线线人行为变化报告。本研究的目的是调查在线无监督研究中基于线人的 MBI
在2019年12月,在湖北省武汉市发现了许多病毒性肺炎病例。到2020年2月,全国范围内有20,000多例2019年冠状病毒疾病(Covid-19),有425例患者死亡。在这次暴发中,西方医学在不识别病原体的情况下进行有针对性的治疗很难,但是传统中药(TCM)可以通过综合征分化和治疗迅速确定原因(Zeng等,2020)。covid-19属于TCM中“流行病”类别,其病理变化首先出现在间质肺中(Yang and Fan,2021)。主要症状是发烧,干性咳嗽和疲劳。在严重的情况下,可能会发生肺合并(Miao等,2020; Xiong,2020; Zhan等,2020)。鉴于这些症状,应用了许多处方,例如金胡乌拉甘格颗粒,Shufeng Jiedu胶囊,Jingfang颗粒和Jinbei口服液体(JB。l),并在诊所显示出明显的治愈作用。在其中,JB。L在2020年2月在山东省(第二版)的新型冠状病毒肺炎的中药诊断和治疗计划中列出,我们随后的临床数据分析表明,JB的效果。L优于单一化学疗法组(Li等,2021)。JB。它具有补充气和滋养阴,驱除血液停滞和去除痰液的作用。因此,在本实验中,JB的化学组成。L is composed of Astragali radix , Codonopsis radix , Angelica sinensis , Glehniae radix , Scutellariae radix , Fritillariae cirrhosae bulbus , Chuanxiong rhizoma , Salvia miltiorrhiza radix , Pinelliae rhizoma praeparatum cumalumine , Lonicerae japonicae fl os , Forsythiae Fructus和Glycyrrhizae radix。尽管TCM处方具有一定的理论和临床应用基础,但复合TCM处方的材料基础很复杂,而动作机制是多种多样的,这给TCM的有效性带来了基本材料研究。近年来,连字符技术是对复杂矩阵中未知化合物的快速定性分析的强大工具,尤其是超出性液态色谱,以及四极杆的时间串联串联质量光谱法(UPLC-Q-Q-TOF-MS),这是有益于其高分辨率和敏感性的。这些方法已被证明是对TCM制剂快速分析的有效和高度敏感的工具(Gao等,2014; Zhang等,2017a; li等,2018; Wang等,2018; Sun等,2021)。此外,UPLC与三极四极质量光谱法(UPLC-QQQ-MS/MS)可以很好地应用于通过多个反应监测(MRM)模式对TCM多个化学成分的定量分析,这在TCM的现代化中具有很大的意义(Wu et and an e et al。 )。研究TCM效率的材料基础是解决TCM有效作用原理的先决条件,而确定TCM的有效组成部分是主要任务。l通过UPLC-Q-TOF-MS/MS定性确定,并且主要功能组件通过UPLC-MS/MS定量分析。这是关于JB化学成分的系统分析的第一个报告。l,为质量控制和对其药效学的深入研究提供了基础。
到2030年,人口老化是全球问题的全球人口的一人,这是一个全球问题(Rudnicka等,2020)。生理功能的稳定下降是衰老的标志。被认为是由于分子改变或“标志”损害组织和器官功能和恢复能力的“标志”(Chakravarti等,2021;López-Otín等人,2023年)。反过来,这被认为会引起慢性病,例如代谢,心血管,肿瘤和神经退行性疾病,以及脆弱和固定的老年症状(Abbasi等,2023; 2023; Wagner等,2023; Wagner等,2023; Zhou; Zhou等人,2023; k.等。 Montégut等,2024)。一种先天的生物学过程,适应性且对治疗干预措施有反应,并存。使用各种遗传,营养和药物干预措施,科学家在过去几十年中取得了令人印象深刻的进步(Mkrtchyan等,2020; Sourada andKuglík,2020; Wang等,2022)。因此,鉴于全球人口老龄化问题的严重程度越来越严重,确定影响衰老过程和相关健康风险的生物标志物至关重要。为了揭示对老化过程的管理和延迟的新见解,本研究打算研究PA(生物衰老的关键标志)PA之间的可能关联。pa是与生物衰老有关的关键思想(Liu等,2018; Kuo等,2021)。一般而言,时间年龄(CA)和临床生物标志物以及血细胞参数用于评估PA。鉴于PA提供了比CA的身体年龄的更准确表示,研究表明PA是死亡,慢性病和身体机能下降的良好预测指标(Kuo等,2022)。遗传倾向和生活方式差的选择,例如大量吸烟,饮酒过多,慢性病和癌症,都导致PA的增加。另一方面,过着健康的生活方式,包括吃水果和蔬菜并进行中等运动可能会降低PA(Noren Hooten等,2022; Li等,2024a; Wu等,2024)。CMI作为一种新型指标引入,用于使用血脂标记和重量与高度比(WHTR)评估内脏肥胖症。whtr,一种腹部肥胖症的度量,不仅是测量腰围(WC)更有意义。已经表明,WC或体重指数(BMI)作为心血管疾病危险因素的可靠歧视因子比WHTR较少。因为BMI测量结果不能区分躯干和内脏肥胖,而解剖脂肪分布被认为很重要,因为它会产生不同的代谢效应(Chen R.等,2022; Tao et al。,2024)。然而,CMI同时考虑了甘油三酸酯(TG)和高密度脂蛋白胆固醇(HDL-C),它们是心血管风险和肥胖症的关键指标(Liu C.等,2022; Baratta et al。,2023; Nussbaumerova and Rosolova and Rosolova,20223; Baratta等人,2023年)。根据最近的研究,CMI高的人可能会有更多的系统性炎症(Carvalho等,2024; Xu B.等,2024)。此外,升高的CMI显着相关生存表明CMI与心血管疾病,代谢综合征和其他疾病有关,这意味着IT对连接疾病筛查的重要性(Lazzer等,2023; Miao等,2023; Sun等; Sun等,2023; Ye等,2024)。相反,定期运动与CMI的大幅度降低有关(Xue等,2024)。
1。伯特利·塔雷基(Bethel Tarekegne),丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell。“存储作为股票资产。”当前的可持续/可再生能源报告8,149-155(2021年9月)。2。Charlie Vartanian,Matt Paiss,Vilayanur Viswanathan,Jaime Kolln,David Reed。 “审查储能系统的代码和标准”。 当前的可持续/可再生能源8,138-148(2021年9月)。 3。 Patrick Balducci,Kendall Mongird,Mark Weimar。 “了解储能对电源系统的可靠性和弹性应用的价值。” 当前的可持续/可再生能源报告8,131-137(2021年9月)。 4。 Xiang Li,Peiyuan Gao,Yun-Yu Lai,J。DavidBazak,Aaron Hollas,Heng-Yi Lin,Vijayakumar Murugesan,Shuyuan Zhang,Chung-Fu Cheng,Wei-Yao Tung,Yuehting Lai,Yuehting Lai,Yueh-ting Lai,Ruozhu Feng,Yien Yien wang,Wei-wang,Weunwang,wang,W。 “有机铁复合体的对称性设计,用于长循环性有机氧化还原流动电池。” 自然能源6,873-881(2021年9月)。 5。 Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。 “对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。” 材料化学杂志A 9(36),20766-20775(2021年8月)。 6。 Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。 “锂离子电池物理学和基于统计的健康模型。” 7。 8。 9。Charlie Vartanian,Matt Paiss,Vilayanur Viswanathan,Jaime Kolln,David Reed。“审查储能系统的代码和标准”。当前的可持续/可再生能源8,138-148(2021年9月)。3。Patrick Balducci,Kendall Mongird,Mark Weimar。“了解储能对电源系统的可靠性和弹性应用的价值。”当前的可持续/可再生能源报告8,131-137(2021年9月)。4。Xiang Li,Peiyuan Gao,Yun-Yu Lai,J。DavidBazak,Aaron Hollas,Heng-Yi Lin,Vijayakumar Murugesan,Shuyuan Zhang,Chung-Fu Cheng,Wei-Yao Tung,Yuehting Lai,Yuehting Lai,Yueh-ting Lai,Ruozhu Feng,Yien Yien wang,Wei-wang,Weunwang,wang,W。“有机铁复合体的对称性设计,用于长循环性有机氧化还原流动电池。”自然能源6,873-881(2021年9月)。5。Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。 “对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。” 材料化学杂志A 9(36),20766-20775(2021年8月)。 6。 Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。 “锂离子电池物理学和基于统计的健康模型。” 7。 8。 9。Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。“对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。”材料化学杂志A 9(36),20766-20775(2021年8月)。6。Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。“锂离子电池物理学和基于统计的健康模型。”7。8。9。权力来源杂志501,230032(2021年7月)。Hee-Jung Chang,Ismael A. Rodriguez-Perez,Matthew Fayette,Nathan L. Canfield,Huilin Pan,Daiwon Choi,Xiaolin Li,David Reed。“水基粘合剂对轻度水性锌电池中锰二氧化碳阴极的电化学性能的影响。”碳能3:(3),473-481(2021年7月)。Bhuvaneswari M. Sivakumar,Venkateshkumar Prabhakaran,Kaining Duanum,Edwin Thomsen,Brian Berland,Nicholas Gomez,David Reed,Vijayakumar Murugesan。“钒氧化还原流量电池中碳电极的长期结构和化学稳定性。”ACS应用能源材料4:(6),6074-6081(2021年6月)。Xiaowen Zhan,Minyuan M. Li,J. Mark Weller,Vincent L. Sprenkle,Guosheng Li。 “最近用于卤化钠卤化物电池的阴极材料的进度。” 材料14:(12),3260(2021年6月)。 10。 Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。 “可逆的酮氢化和脱氢有机氧化还原流量电池。” 科学372:(6544),836-840(2021年5月)。 11。 J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。Xiaowen Zhan,Minyuan M. Li,J.Mark Weller,Vincent L. Sprenkle,Guosheng Li。 “最近用于卤化钠卤化物电池的阴极材料的进度。” 材料14:(12),3260(2021年6月)。 10。 Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。 “可逆的酮氢化和脱氢有机氧化还原流量电池。” 科学372:(6544),836-840(2021年5月)。 11。 J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。Mark Weller,Vincent L. Sprenkle,Guosheng Li。“最近用于卤化钠卤化物电池的阴极材料的进度。”材料14:(12),3260(2021年6月)。10。Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。“可逆的酮氢化和脱氢有机氧化还原流量电池。”科学372:(6544),836-840(2021年5月)。11。J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。“使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。物理化学杂志B 125(19),5089-5099(2021年5月)。12。junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。13。14。“在可充电锌电池复兴中的十字路口。”今天的材料45:191-212(2021年5月)。Nimat Shamim,Edwin C. Thomsen,Vilayanur V. Viswanathan,David Reed,Vincent Sprenkle,Guosheng Li。 “在剃须占空比下评估斑马电池模块。” 材料14:(9),2280(2021年4月)。 Biwei Xiao,Yichao Wang,Sha Tan,Miao Song,Xiang Li,Yuxin Zhang,Feng Lin,Kee Sung Han,Fredrick Omenya,Khalil Amine,Xiao-Qiao-Qinging Yang,Yang,David Reed,David Hu,Yanyan Hu,Gui-liang Xu,Enyyuan liia liia li,XIA,XIA,XIA,XIA,XINIA,XINIA,XINININ kininnin。 “富含锰的层状钠阴极的空缺 - 实现了O3相稳定。” Angewandte Chemie International Edition 60(15),8258-8267(2021年4月)。 15。 di Wu,Xu MA。 “用于控制和尺寸连接网格的能量存储的建模和优化方法:审查。” 当前的可持续/可再生能源报告(2021年3月)。 16。 di Wu,Xu MA,Patrick Balducci,Dhruv Bhatnagar。 “对幕后光伏的经济评估,并在夏威夷群岛上配对电池。” 应用能源286(2021年3月)。 17。 Vijayakumar Murugesan,Zimin Nie,Xin Zhang,Peiyuan Gao,Zihua Zhu,Qian Huang,Litao Yan,David Reed,Wei Wang。 “通过可调溶剂化学的化学反应加速了钒氧化还原流量电池的设计。” 细胞报告物理科学2(2),100323(2021年2月)。 18。 “应力和与界面兼容的红磷阳极,用于高能和耐用的钠离子电池。” ACS Energy Letters 6,547-556(2021年2月)。Nimat Shamim,Edwin C. Thomsen,Vilayanur V. Viswanathan,David Reed,Vincent Sprenkle,Guosheng Li。“在剃须占空比下评估斑马电池模块。”材料14:(9),2280(2021年4月)。Biwei Xiao,Yichao Wang,Sha Tan,Miao Song,Xiang Li,Yuxin Zhang,Feng Lin,Kee Sung Han,Fredrick Omenya,Khalil Amine,Xiao-Qiao-Qinging Yang,Yang,David Reed,David Hu,Yanyan Hu,Gui-liang Xu,Enyyuan liia liia li,XIA,XIA,XIA,XIA,XINIA,XINIA,XINININ kininnin。“富含锰的层状钠阴极的空缺 - 实现了O3相稳定。”Angewandte Chemie International Edition 60(15),8258-8267(2021年4月)。15。di Wu,Xu MA。“用于控制和尺寸连接网格的能量存储的建模和优化方法:审查。”当前的可持续/可再生能源报告(2021年3月)。16。di Wu,Xu MA,Patrick Balducci,Dhruv Bhatnagar。“对幕后光伏的经济评估,并在夏威夷群岛上配对电池。”应用能源286(2021年3月)。17。Vijayakumar Murugesan,Zimin Nie,Xin Zhang,Peiyuan Gao,Zihua Zhu,Qian Huang,Litao Yan,David Reed,Wei Wang。“通过可调溶剂化学的化学反应加速了钒氧化还原流量电池的设计。”细胞报告物理科学2(2),100323(2021年2月)。18。“应力和与界面兼容的红磷阳极,用于高能和耐用的钠离子电池。”ACS Energy Letters 6,547-556(2021年2月)。Xiang Liu, Biwei Xiao, Amine Daali, Xinwei Zhou, Zhou Yu, Xiang Li, Yuzi Liu, Liang Yin, Zhenzhen Yang, Chen Zhao, Likun Zhu, Yang Ren, Lei Cheng, Shabbir Ahmed, Zonghai Chen, Xiaolin Li, Gui-Liang Xu, Khalil胺。19。Minyuan M. Li,Xiaochuan Lu,Xiaowen Zhan,Mark H. Engelhard,Jeffrey F. Bonnett,Evgueni Polikarpov,Keeyoung Jung,David M. Reed,Vincent Sprenkle,Vincent Sprenkle,Guosheng Li。“高温硫磺电池在低温下通过优质的熔融性可润湿性。”化学通信57(1)45-48(2021年1月)。20。Maitri Uppaluri,Akshay Subramaniam,Lubhani Mishra,Vilayanur Viswanathan,Venkat R. Subramanian。“传输模型可以预测锂金属电池中的逆特征而不修饰动力学吗?”电化学学会杂志167,第16号,文章编号160547(2020年12月)。21。Qian Huang,Bin Li,Chaojie Song,Zhengming Jiang,Alison Platt,Khalid Fatih,Christina Bock,Darren Jang,David Reed。“通过稳定的参考电极对全瓦数氧化还原流量电池进行原位可靠性研究。”电化学学会杂志165,第16号,第160541条(2020年12月)。22。Jeremy Twitchell,Jeffrey Taft,Rebecca O'Neil,Angela Becker-Dippmann。2021,PNNL-30172,西北国家实验室,华盛顿州Richland。 嵌入式网格储能的调节含义23。 丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell,Danielle Preziuso。 2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。 能源公平与环境正义研讨会报告2021,PNNL-30172,西北国家实验室,华盛顿州Richland。嵌入式网格储能的调节含义23。丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell,Danielle Preziuso。2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。 能源公平与环境正义研讨会报告2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。能源公平与环境正义研讨会报告