摘要:通过不同的作用机制对癌症进行化学/基因治疗的组合已经出现,以增强癌症的治疗功效,并且由于缺乏高效和生物相容性的纳米载体,仍然仍然是一项具有挑战性的任务。在这项工作中,我们报告了一种新的纳米系统,基于两亲性磷齿状(1-C12G1)胶束胶束,以用于三层microRNA-21抑制剂(miR-21i)和阿霉素(DOX)(DOX),用于三重阴性乳腺癌的联合治疗。制备了长线性烷基链和十个质子化吡咯烷表面基的两亲磷齿状树状,并证明在水溶液中形成胶束,并具有103.2 nm的水动力大小。胶束被证明是稳定的,能够封装具有最佳负载含量(80%)和封装效率(98%)的抗癌药物DOX,并且可以压缩miR-21i以形成双流线物以使其具有良好的稳定性,以抗退化。1-C12G1@dox/miR-21i流媒体的共传递系统具有pH依赖性的DOX释放曲线,并且可以很容易被癌细胞吞噬以抑制它们,因为它们在静脉内静脉内注射后被进一步验证,该抗癌机构得到了进一步验证,以处理静脉内的三重乳液模型。具有在研究剂量下经过验证的生物相容性,可以开发出开发的两亲性磷状胶束,以作为一种有效的纳米医学制剂,用于协同癌症治疗。
微小RNA(miRNA)是一类小型非编码RNA,在调控基因表达和相关病理过程中发挥着至关重要的作用。1,2作为一种重要的生物标志物,miRNA在细胞内的分布和表达与许多疾病,尤其是癌症有着密切的关系。因此,miRNA的体外检测和原位成像都有利于疾病诊断。3最近,外泌体是一种直径约30 – 150纳米的小型载体,含有几种不同的生物分子,包括蛋白质、脂质以及mRNA和非编码RNA。外泌体也被认为是细胞 - 细胞通讯介质中的重要部分,因为它们可以将其内容物(尤其是miRNA)释放到邻近细胞和远端细胞。4 – 6因此,外泌体miRNA被视为疾病诊断和病理研究的有前途的生物标志物。据报道,许多 miRNA 检测方法,如实时定量聚合酶链式反应 (qRT-PCR)、北方印迹、微阵列,可在溶液或细胞裂解物中实现灵敏的 miRNA 检测。7,8 尽管如此,这些方法也因步骤耗时、程序复杂和成本昂贵而受到批评,阻碍了它们的广泛应用。7,9,10
图 1 出生后早期发育过程中皮质结节中 miR-34a 表达增加。 (A、B) TaqMan RT-qPCR 分析:(A) 与尸检对照组织 (n = 27) 相比,结节性硬化症 (TSC) 患者 (n = 37) 切除的皮质结节中 miR-34a 表达较高 (中位 FC = 3.4,p < 0.001); (B) 与年龄匹配的尸检对照组 (n = 13) 相比,0–4 岁 TSC 年龄组的 MiR-34a 较高 (FC =17.5, p < 0.001),但在 4–12 岁 (n = 10 vs. n = 5) 和 >12 岁 (n = 8 vs. n = 9) 的 TSC 与年龄匹配的对照组之间没有显着差异;(C, D) MiR-34a-5p 原位杂交:婴儿 TSC 皮质 (8 个月大) 与尸检衍生的对照皮质 (9 个月大) 的灰质 (C) 和白质 (D) 相比;miR-34a 原位杂交信号 (IHS) 的双标记,以蓝色显示,NeuN (C,插图) 和 GFAP (D,插图),以红色显示; (E, F) 双标记显示 miR-34a IHS 与 NeuN 在正常和畸形神经元(DN;E)中共定位,且与 GFAP 在巨细胞(GC;E、F)中共定位;*** p < 0.001;(A) 中的 Mann–Whitney 和 (B) 中的 Kruskal–Wallis 与 Dunn 的事后检验,中位数、误差线表示最小-最大范围。
1人类遗传学研究所,分区表观遗传学与代谢,德国吕贝克大学; 2大脑,行为和代谢中心(CBBM),德国吕贝克大学吕贝克大学; 3德国慕尼黑的德国糖尿病研究中心(DZD); 4糖尿病的研究部门神经生物学,糖尿病与肥胖研究所,德国慕尼黑的赫尔姆霍兹中心; 5德国吕贝克大学吕贝克大学实验内分泌学研究所; 6大学医院Schleswig-Holstein的实验与临床药理学研究所,德国基尔校区; 7德国汉堡大学医学中心汉堡大学医学中心一般,内脏和胸外手术系; 8德国慕尼黑慕尼黑技术大学TUM医学院神经生物学主席; 9英国考文垂的考文垂大学和沃里克郡大学医院; 10分子细胞生物学,理论医学研究所,医学院,奥格斯堡大学,德国奥格斯堡大学
引言:阿尔茨海默病 (AD) 是一种进行性神经退行性疾病,全球至少有 2700 万人受其影响。这种疾病不仅严重影响患者及其家人的生活,还给社会带来沉重的经济负担。目前尚无明确的疾病改良疗法,各种疗法已被开发用于控制 AD 的症状。药物再利用是一种有价值的替代方法,可以发现已获批或正在研究的药物在其原有适应症之外的新用途。RNA 测序 (RNA-seq) 是发现疾病异质性基因表达的一种实用方法。因此,我们的研究应用了一种计算药物再利用流程,基于从 RNA-seq 数据中提取的 AD 差异基因表达特征来探索候选药物。方法与材料:从 GEO 数据库 (https://www.ncbi.nlm.nih.gov/geo/) 获取了 10 例对照和 8 例 AD 死后人类海马脑组织(登录号为 GSE173955)的表达谱。使用 GEO2R 识别 AD 与正常组织之间的差异表达基因 (DEG)。接下来,使用 LINCS 数据库识别 AD 疾病的潜在候选药物。然后,通过大量文献综述和药物研究,筛选出排名靠前的 FDA 批准药物。反过来,将 DEG 导入 STRING 数据库,以识别蛋白质之间的相互作用关联。之后,选择所有显著性综合评分为 0.7 的相互作用进行进一步分析。选择连接度最高的合适基因作为枢纽基因。靶标扫描数据库是一个专门收集 microRNA-mRNA 靶向关系的数据库。这些数据库用于获取枢纽基因相关的 miRNA。结果:本研究鉴定出 1,878 个 |log2FC| ≥ 1 且 p 值 ≤ 0.05 的基因为 DEG:909 个基因上调,969 个基因下调。能够逆转 AD 表达模式的显著改变的药物谱包括奥沙利德、莫米洛替尼和恩扎妥林。此外,S100A8 已被确定为 Cytoscape 中最突出的枢纽基因之一,在 AD 的背景下它可以被 miR-98-5p 抑制。结论和讨论:在本研究中,我们提出了几种潜在的可重新利用的候选药物,莫沙必利、莫米洛替尼和恩扎斯塔林,以及 miR-9-5p,用于治疗 AD 进展。莫沙必利目前用于治疗 2 型糖尿病、功能性消化不良、功能性便秘和上腹痛综合征。莫米洛替尼是一种 Janus 激酶 1 和 2 抑制剂,用于治疗骨髓纤维化。恩扎斯塔林已用于治疗复发性多形性胶质母细胞瘤。我们的研究结果可能指导针对不同疾病进展阶段的进一步重新利用研究。此外,我们报告 S100A8 充当炎症介质,其水平随着大脑年龄的增长而增加。MiR-98-5p 有可能抑制 AD 中的 S100A8 表达。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 10 月 28 日发布。;https://doi.org/10.1101/2023.10.26.564008 doi:bioRxiv preprint
Arash Keshavarzi Arshadi A,♰,Milad Salem B,♰,Heather Karner C,D,E,F,F,♰,Kristle Garcia,C,C,D,E,Abolfazl Arab C,De,Jiann Shiun Yuan B,Jiann Shiun Yuan B和Hani Goodarzi Goodarzi c,d,e e biriidies fortiride fortiride fortiride fortiride fortiride fortiriide of biret froreide of indrenter frolriiday美国佛罗里达州奥兰多市奥兰多市佛罗里达州佛罗里达州佛罗里达州佛罗里达大学计算机工程系,美国佛罗里达州奥兰多市,美国c泌尿外科系,加利福尼亚大学,旧金山,旧金山,加利福尼亚州旧金山,美国d Helen Diller家族综合癌症中心,加利福尼亚大学,旧金山,加利福尼亚州,加利福尼亚州,美国加利福尼亚州,美国弗朗西斯科大学,美国弗朗西斯科州,美国弗朗西斯科州,弗朗西斯科州。美国加州大学旧金山大学,美国加利福尼亚州旧金山分校的美国f bakar计算健康科学研究所。我们提出了Ribostrike,这是一个深度学习框架,可识别针对特定microRNA的小分子。为了证明其功能,我们将其应用于已知的乳腺癌驱动因素MicroRNA-21(miR-21)。为了确保所选分子仅靶向miR-21,而不是其他microRNA,我们还针对DICER进行了反屏幕,DICER是一种参与MicroRNA生物发生的酶。此外,我们使用辅助模型来评估毒性并选择最佳候选者。使用来自各种来源的数据集,我们筛选了一个900万个分子的池,并确定了8个,其中3个在报告基因测定和RNA测序实验中均显示出抗MIR-21的活性。在乳腺癌的小鼠模型中也测试了其中之一,从而大大降低了肺转移。这些结果表明,核糖有效筛选癌症中的microRNA靶向化合物的能力。
三十年前,人们发现秀丽隐杆线虫中的一种小的非编码 RNA 可以在转录后水平调控基因表达 (1, 2)。随后,人们在高等真核生物中发现了大量微小 RNA (也称为 miRNA),并发现它们可以调控大多数哺乳动物的 mRNA (3)。尽管如此,人类中到底有多少微小 RNA 仍是一个有争议的问题。在 mirBase 22.1 (4) 中注释的 1973 个人类微小 RNA 中,许多都无法经受严格的标准筛选,例如表达、序列限制或生产性前体加工的证据。因此,人类中功能性微小 RNA 的数量似乎在 556 个(mir-GeneDB 2.0;参考文献 5)到 758 个(6)之间。由于大多数微小 RNA 仅在组织中表达足够高时才会发挥作用(见下文),这进一步减少了功能相关的微小 RNA 的比例。因此,初步推测有多达 150 种 microRNA 在心血管系统中发挥着关键作用。其中,30-35 种 microRNA 已在体内实验模型中得到全面分析和验证(表 1)。许多候选药物的临床开发已开始展现其潜力,预计还会有更多候选药物陆续问世。
摘要。乳腺癌已超过肺癌,成为全球女性最常见的恶性肿瘤。三阴性乳腺癌 (TNBC) 是预后最差的乳腺癌类型。作为一种异质性疾病,TNBC 的发病机制涉及多种致癌途径,包括基因突变和信号通路改变的参与。微小 RNA (miRNA) 是小的内源性单链非编码 RNA,可与靶细胞 mRNA 的 3' 非翻译区结合,以负向调节这些特定 mRNA 的基因表达。因此,miRNA 参与细胞生长、发育、分裂和分化阶段。miRNA 还参与肿瘤发生、肿瘤生长和转移调控中的基因靶向,包括乳腺癌。同时,miRNA也调控信号通路的成分。本文详细介绍了近年来发现的miRNA在TNBC信号通路中的作用。还探讨了利用miRNA和人工智能进行乳腺癌双靶向治疗的新概念。
摘要:活性氧(ROS)是自由基氧中间体,在信号转导中是重要的第二使者。但是,当这些分子的积累超过抗氧化剂酶的缓冲能力时,会发生氧化应激和内皮细胞(EC)功能障碍。ec功能障碍将血管系统转变为促凝的,促进的炎症状态,从而增加患心血管疾病(CV)疾病和代谢疾病的风险。研究已转向对CV风险因素的microRNA处理的研究,因为这些转录后调节剂已知可以共同调节ROS。在这篇综述中,我们将讨论ROS途径和产生,正常的内皮细胞生理学和ROS诱导的功能障碍,以及当前对常见代谢性疾病的知识及其与氧化应激的联系。还将探索基于microRNA的治疗策略,以响应氧化应激和microRNA在控制ROS中的调节作用。重要的是要深入理解产生ROS的机制以及如何操纵这些酶促副产品可以保护内皮细胞功能免受氧化应激的影响并防止血管疾病的发展。