洋葱(Allium cepa L.)是一种园艺物种,其灯泡和空中部位被消耗,后者为绿洋葱。洋葱种植受疾病的影响,对水胁迫极为敏感,这大大降低了其产量。这项研究的目的是确定应用微生物财团,由生物肥料,生物刺激剂和生物防治剂组成的微生物财团对catamarca省(阿根廷)的洋葱培养的影响。由生物学真菌trichoderma spp的天然菌株组成的生物输入。和细菌菌株巴西,苏云金芽孢杆菌,根瘤菌豆科植物和Bradyrhizobium sp。被使用。这项研究是在卡帕亚氏菌科罗尼亚·德尔瓦勒(Colonia del Valle)的一个地块中进行的。实施了两种治疗方法:一种接种微生物财团,另一种是用水作为对照。进行了两个叶面应用。评估洋葱作物性能认为总产量,平均鳞茎重量,鳞茎大小,收获指数,生物质产量和植物数。结果表明,微生物联盟的应用增加了洋葱植物的产量,生长和发展。确定所选天然微生物的应用对植物具有生长促进作用,从而提高了洋葱作物的生长和生产力。
我们提出了cambrian kunzam la组中的psammichnites gigas gigas sub-ichnozone,在霍吉斯山谷(Hojis Valley),基因纳(Kinnaur),喜马拉雅山基因纳(Kinnaur),表明寒武纪2 - 宿主沉积物的4阶段4年龄。此外,该论文还报告了八个微生物诱导的沉积结构(MISS),这些沉积结构(MISS)由独特的网状(“象皮肤”和“ Kinneyia”类型)和线性模式,带有破裂的涟漪波峰和垫子凹陷结构。这些错过与Psammichnites Gigas Gigas的放牧小径密切相关。在交替排序且厚(3 - 20厘米)的砂岩床和相关沉积结构中保存的保存表明浅海,近岸到岸面的沉积环境。Miss,Ripple标记和生物稳定的底物表明碎屑的c ux有限,光自养生微生物可能有助于其形成。
许多基于化学合成的社区在深海环境中繁荣发展,依赖于硫化物氧化细菌的代谢活性。术后siboglinid tubeworms就是这种情况,其对营养的需求主要通过其endosymbiotic细菌来满足,其中包括在一个称为The Troposomy体的专用器官中。这种化学共生的导致滋养体的氮同位素组成明显低于其他类型的软组织。然而,Sibo Glinids的氮利用的特定过程尚不清楚。作为相关酶(氮酶和硝酸盐还原酶)的关键要素,在氮的生物地球化学循环中是必不可少的。Siboglinids的Mo同位素组成(δ98MO)是解码与氮代谢有关的过程的潜在代理。在这项研究中,我们发现了Δ98mo值沿着南部中国海的Haima渗漏的actimentiferan siboglinid paraescarpia echinospica沿着 - 4.59‰的阴性(-1.13‰±1.75‰±1.75‰±1.75‰,n = 19) - 自然量为Δ98mo的δ98mo值。建议这种极为负的同位素组成是由硝酸盐减少期间的肾小管内共生体或epibionts降低引起的同位素cally light mo引起的。这样的MO同位素签名可以提供一种用于识别Siboglinid Tubeworms的手段,Siboglinid tubeworms是一组因缺乏矿物质骨骼而在岩石记录中由于缺乏矿化骨架而逃脱了明确鉴定的annelids。
方法:在MASE项目(太空探索的火星类似物)中,我们选择了代表性的缺氧类似环境(多年冻土,盐矿,酸性湖泊和河流,硫磺弹簧),以对其微生物群落进行全面分析。我们通过基于丙嗪的扩增子和shot弹枪元基因组测序评估了完整细胞的微生物组谱,并补充了广泛的培养工作。结果:从微生物组分析中对MASE部位蓬勃发展的完整微生物群落检索到的信息,加上31种模型微生物的分离以及15个高质量基因组的15种模型微生物的分离,使我们能够观察到原理途径,与中度环境相比,在MASE位点上阐明了特定的微生物功能。微生物的特征是令人印象深刻的机制来承受物理和化学压力。我们的所有分析级别揭示了微生物群落对复杂有机物的强烈和无所不在的依赖性。此外,我们确定了一个在所有地点蓬勃发展的34个多生物群的极端耐药性世界。
belda的Eugeni,1,2 Voland高中,1瓦伦蒂娜·特雷尔利(Valentina tremali),3个白色falone ,4,5 Solia Adriouch, Tiphaine le Roy , 11,12 Maria Carlota Dao,1 Promi Das,13 Soraya Fellahi,14,15 Sofia Forslund,16 Nathalie Galleron,17 Tue H Hansen,8 Bridget Holmes,18 Boyang Ji,18克里斯蒂安·刘易森(Christian Lewinter),《举止的路易丝》, BSøndertoft,8 Sothea Touch, Jean-Michel Oppert,7,26 Michael Stumvoll, 17,30让·丹尼尔·扎克(Jean-Daniel Zucker),1,6弗雷德里克·贝克(FredrikBäcked),3杰罗恩·拉斯(Jeroen Raes),4,5 carine 1.7
Erwan Bourdonnais,CédricLeBris,Thomas Brauge,Graziella Midelet。跟踪英国河道和北海地区野生平菲鱼中的抗菌抗性指示基因:一个健康问题。环境污染,2024,343,pp.123274。10.1016/j.envpol.2023.123274。hal- 04384404
卫生涂料旨在通过在膜内和含量赋予抗菌活性来控制微生物的生长。精油(EOS)中的生物化合物(例如萜烯)具有潜在的抗菌特性。添加的,修改的蒙脱石(MT)作为这些化合物的纳米级载体表现出希望。这项研究旨在获得官能化的抗菌蒙脱石杂种,以应用于生物活性涂料的制定中。评估的生物源化合物是白百里香和薄荷的精油,首次用于卫生涂料中。将大豆衍生物用作粘土矿物的有机修饰剂。通过傅立叶转换红外(FTIR)光谱,X射线衍射(XRD),热力计分析(TGA),扫描电子显微镜(SEM)和能量驱动器散热光谱仪(EDS)来表征合成的杂种。生物测定是针对包括cladosporium cladosporioides,Chaetomium globosum和Aspergillus versicolor的真菌菌株以及细菌菌株(如葡萄球菌金黄色葡萄球菌和大肠杆菌)进行的。白百里香是具有较高抗菌活性的EO。补充说,白百里香油设法将其抗菌活性赋予合成的杂种。每卷(PVC)有0.75 con中心的配制油漆有效地防止了污染。
土地利用从自然生态系统到农田的变化会极大地改变全球土壤的12种,尤其是挑战撒哈拉以南非洲的挑战,并具有快速的人口增长和强化农业。土壤微生物多样性对于支持14个生态系统多功能性和防止病原体生长至关重要。最近的15项研究表明,农业活动使跨16个地点的微生物群落均匀,这可能会导致该规模的功能均匀化。然而,鉴于17微生物功能的冗余,由农场18的功能均质化可能比分类学均质化更广泛。我们比较了19种自然土地和真菌核的分类和功能组成,在肯尼亚和马拉维的范围(〜200 21 m)的天然土地和农田之间的尺度(〜200 21 m)到跨地点(〜1500 km),使用226S rRNA和其基因的散布测序,以及肯尼亚和马拉维的跨站点(〜1500 km)。土壤微生物23功能组成比自然土地比分类学组成的24个单位更广泛地匀浆,这表明在跨尺度上发生了类似的功能性25种对农业的反应,而范围内的范围内则存在不同的分类群。此外,26个环境因素主要影响地点均匀性,而27种耕作本身是跨站点同质性的重要贡献者,这表明与环境变化相比,农业的28个压倒性影响。加法 - 29盟友,致病真菌在农田中相对较丰富,这可能是由于30种诱导的物种竞争和农业引起的环境变化,例如低31个土壤pH。我们的发现强调了在评估土地利用变化对33个土壤健康的影响以制定可持续土地管理策略的影响时,需要调查微生物功能多样性32以及分类学多样性。34
抗菌素抵抗(AMR)构成了关键的全球健康威胁,使全球感染管理变得复杂。关于世界卫生组织(WHO)在2019年释放的抗生素抗药性患病率的数据导致127万人死亡(Murray等,2022; Who,2023)。此外,世界银行估计,到2050年,AMR的经济影响可能会损失高达1万亿美元的医疗保健费用,而到2030年,国内生产总值(GDP)损失了3.4万亿美元(Jonas等人,2017年)。迫切需要发现新药替代耐药性抗生素已变得越来越重要。最大的新抗生素生产商来源之一来自土壤,其中99%的微生物物种。抗菌化合物是由土壤中的微生物产生的,由于传统培养技术的局限性,这些化合物在实验室中通常仍然无法培养,而传统培养技术无法复制微生物的自然栖息地(Choi等,2015; Bhattacharjee,2022222)。具有获取新抗生素剂的巨大潜力的土壤类型是泥炭土(Kujala等,2018; Liu等,2022; Atapattu等,2023)。泥炭土包含富含养分的有机沉积物,这些养分支持微生物生长和多样性(Nawan and Wasito,2020)。必须利用泥炭土中丰富的微生物含量来开发新的抗生素。当前的微生物培养技术通常仅限于微生物的一部分,从而限制了二级代谢产物的分离。克服这些局限性需要创新的方法来培养产生抗生素的微生物,这些微生物在实验室条件下仍然无法养活。未经培养的土壤技术(UST)或原位孵育是最新的发展之一,涉及使用环境中存在的自然生长因子进行培养(Berdy等,2017; Chaudhary等,2019)。
摘要肠道轴在呼吸道感染期间至关重要,包括流感病毒(IAV)感染。在本研究中,我们使用了高分辨率的shot弹枪元基因组学和靶向代谢组学分析来表征小鼠肠道肠道微生物群的组成和元倾斜度中与流感相关的变化。我们观察到7天(d)7天的分类级变化,包括明显减少乳酸杆菌科和双歧杆菌科的成员,以及akkermansia muciniphila的丰度增加。在D14上,某些物种持续存在扰动。宏基因组数据的功能尺度分析揭示了几种代谢途径的短暂变化,尤其是导致短链脂肪酸(SCFA),多胺和色氨酸代谢物的瞬时变化。对血清的定量靶向代谢组学分析揭示了特定类别的肠道微生物群代谢产物的变化,包括SCFAS,三甲胺,多胺和含吲哚的色氨酸代谢物。在D7上观察到吲哚-3-丙酸(IPA)血液水平的明显降低。微生物群相关的代谢产物的变化与分类单元丰度和疾病标志物水平的变化相关。特别是,IPA与一些乳酸杆菌科和双歧杆菌科(limosilactobacillus reuteri,Animalis limosilactobacillus)正相关,并与细菌M7,病毒载量和炎症标志物呈负相关。在患病动物中补充IPA可减少病毒载量,并降低局部(肺)和全身炎症。用靶向IPA产生细菌的抗生素治疗感染前的抗生素,从而增强了病毒载量和肺部炎症,这是补充IPA抑制的作用。这种综合的宏基因组 - 代谢组分分析的结果强调了IPA是导致流感结果的重要因素和潜在的疾病严重性生物标志物。