图2:在Na = 0.95和0.10的TFGB照明下,在具有d〜0.78M(a,c)和D〜0.88M(b,d)的单个TiO 2微球的实验测量(a,b)和计算(C,d)散射光谱。(a)和(b)的插图显示了完全相同的单个微球的SEM图像,其散射光谱分别显示在(a)和(b)中。对于Na〜0.95,实验和计算的向后散射光谱都显示了几个散射最小值,515nm,590 nm,700 nm,对于d〜0.78 d 〜0.78m(a,c);在〜515 nm,585 nm,665 nm的d〜0.88m(b,d),与第一个kerker条件相关。D 〜0.78M的散射最小值在〜590 nm,而D 〜0.88°M的〜665 nm与混合光学静脉的激发有关。
制造商 Sirtex Medical Pty Ltd 批准 CE 标志 自 2002 年起 适应症 治疗对化疗有抵抗力或不耐受的患者中原发性结直肠癌引起的不可切除的肝细胞癌 (HCC) 或不可切除的转移性肝肿瘤。同位素 钇-90 衰变产物 锆-90 成分 树脂 比重 1.125-1.6 克/毫升(与红细胞相当) 直径 32.5 微米 ± 2.5 微米(范围 20-60 微米) T 1/2 64.1 小时(11 天内 94%,每小时约 1% 衰变) β 能量(最大) 2.27 MeV(I β = 100%) 活度-剂量换算因子 49.67 Gy/(GBq x Kg) 组织穿透深度 2.5 毫米(平均) 每个球体的放射性 68 Bq ± 10%(在校准日期和时间)* 活性表现 单剂量大小含 3.0 GBq ± 10% 的 Y-90(在校准日期和时间,溶于 5 毫升注射用水,湿润灭菌) 每 3 GBq 小瓶中的微球数量 4400 万*
使用合成抗原的细胞激活和扩展了工程的T细胞以治疗癌症,通常会导致疗效和耐用性的疗法。在这里,我们描述了一种用于制造合成细胞的高通量微流体系统,该系统模仿了抗原呈递细胞的粘弹性和T细胞激活特性。与刚性或弹性微球相比,合成粘弹性T细胞激活细胞(SYNVAC)导致了人CD8 + T细胞扩张的大量增强,并抑制了调节T细胞的形成。值得注意的是,用Synvacs激活和膨胀的嵌合抗原受体(CAR)T细胞导致汽车转导效率约为90%,并大幅增加T记忆干细胞。工程的汽车T细胞消除了人类淋巴瘤小鼠模型中的肿瘤细胞,抑制了人类卵巢癌异种移植的小鼠肿瘤生长,持续了更长的时间,并降低了肿瘤转发风险。我们的发现强调了粘弹性在T细胞工程中的关键作用,并强调了Synvacs在癌症治疗中的实用性。
配备氢能储存系统 (HESS) 的发电厂,包括基于可再生能源 (RES) 的发电厂,是世界能源发展最有前景的领域之一 [1]。HESS 的关键要素是水电解器、氢气(有时是氧气)储存系统和燃料电池系统。水电解器利用一次电源的多余电能产生氢气(和氧气)。根据最终用户及其需求,生成的氢气可以以压缩形式、液化状态存储在各种载体上,例如金属氢化物、毛细管、微球和碳材料。不饱和烃的可逆加氢过程为安全储存和运输开辟了广阔的前景。一次电源电能的缺乏或缺失由燃料电池系统补偿,该系统将储存的氢气和氧气(来自氧气储存系统或空气)之间的反应化学能转换回电能。
肽和蛋白质药物可作为治疗剂在市场上买到,并通过各种生物技术工艺制备。由于它们在输送过程中缺乏药物稳定性,因此对蛋白质结构进行修改以保持蛋白质的药理特性。各种蛋白质和肽类药物输送方法都用于正确配制药物。此外,蛋白质和肽类药物输送方面的各种进步都试图克服这些治疗剂输送过程中的问题,如提高稳定性、降低毒性水平和提高对蛋白水解失活的抵抗力、生物利用度、效率和改善循环周期。有必要开发多功能药物输送系统和先进技术,以生产出价格合理的高质量产品。这项研究旨在检查蛋白质/肽类药物输送系统的各种方法和最新进展,与传统的药物输送方法相比,以提高患者的依从性。关键词:蛋白质和肽、药物输送系统、微球、脂质体、纳米颗粒、PE 糖基化。引言
喷雾干燥是一种多功能方法,可根据进料材料的特性,配方以及治疗前后生成不同应用的功能颗粒。本演讲将概述功能颗粒的设计和组装,包括热敏感和生物活性颗粒,用于受控释放和微塑料的微粒,磁性和荧光复合材料,以及中端的微分球以及具有层次结构和特性,具有层次结构和特性,这些结构和特性优于通过纳米材料在纳米材料上观察到的层次,并通过喷涂干燥的层[1]。尤其是,使用微流体喷雾干燥,可以产生具有紧密控制特性和靶向特性的均匀颗粒,这有助于我们发展对具有不同微观结构的颗粒的理解,以及进给材料的物理化学特性如何与颗粒功能有关。粒子形成机制的基本原理适用于诸如核心外壳,介孔和磁性颗粒等各种颗粒,并为靶向药物输送,催化,生物吸附,功能性食物等应用提供了例子[2-3]。知识可用于设计针对特定应用的喷涂颗粒,包括用于商业生产的喷雾干燥粉末的新配方[4]。
摘要:自20世纪80年代以来,利用微流体技术生产简单(微球)和核壳(微胶囊)聚合物微粒(通常称为微胶囊化)一直是多项研究的重点。由于其特性可控、可调,且产率可达100%,因此该工艺快速、经济、高效。然而,其绿色环保性、可持续性和可扩展性仍不明确,需要加强该领域的认知和教育。微流体技术生产工艺的可持续性可以基于三大支柱实现/讨论:(i) 废物产生,(ii) 所用溶剂,以及 (iii) 原材料。另一方面,尽管已有多篇论文报道了这些工艺的放大,即并行设置数百或数千个微流控芯片,但据我们所知,尚未探讨这种放大工艺的可持续性。本意见书强调了微流体封装工艺的优势、根据上述支柱 (i-iii) 的绿色性以及在保持其可持续性的同时扩大其规模所需的考虑因素。
药物输送系统的最新进展主要集中在智能药物输送系统上,该系统涉及在正确的时间、正确的剂量下给药以及安全有效的靶向药物输送。这些新的药物输送系统提高了患者的依从性,也为患者采用了更好的治疗方案。蛋白质、肽、基于 DNA 的疗法的引入导致了药物输送系统的进步,从而偏离了注射和口服等传统方法。脂质体、脂蛋白、单克隆抗体、微球、微乳剂等已被用作最新的药物输送系统,尤其是用于鼻腔和肺部途径,其中单克隆抗体和脂质体具有诊断意义,用作生物试剂,用于免疫净化等。水凝胶、纳米颗粒和微胶囊技术的使用是智能药物输送系统的一部分。纳米颗粒可以放置在皮肤、大脑或脊髓中,可以输送从止痛药到化疗的各种药物。因此,由于这些药物输送系统的最新进展与自我调节、控制时间药物监测系统相关,已被证明是未来的健康改善技术。
经手术、放疗、化疗、靶向治疗等治疗后仍不能得到有效控制的肺癌,临床上称为难治性肺癌(1)。目前对于难治性肺癌患者尚无有效的治疗手段,可用的治疗方法主要是对症支持治疗,或在复发或转移出现明显临床症状时给予姑息性抗肿瘤治疗,以减轻患者痛苦,提高生活质量(2,3)。支气管动脉化疗栓塞术(BACE)是难治性肺癌患者局部治疗方法之一(4~6)。随着栓塞材料的研发和应用,BACE治疗肺癌的有效率逐渐提高。但传统栓塞材料包括碘化油、明胶海绵颗粒、聚乙烯醇颗粒等,存在栓塞不完全和并发症发生率高等两大缺陷。载药微球作为一种新型栓塞材料,具有血管栓塞和局部缓释化疗药物的双重功能,在BACE治疗肺癌中取得了良好的临床效果( 7 , 8 )。本研究前瞻性观察了CalliSpheres药物洗脱微球(DEB)联合BACE(DEB-BACE)治疗难治性非小细胞肺癌(NSCLC)的疗效和安全性。
图1 - 周围单核细胞在 +7h至+6天之间浸润海马,并分化为脑单核细胞巨噬细胞。a-d。将氟YG羧酸羧酸盐微球(FYG,0.5μm)注射到SE后尾静脉6H。除非循环单核细胞用克罗膦酸盐脂质体(1 ml/100g; i.p.)在SE之前进行管理。大鼠被牺牲1D,3D和6D。检测CD11b(红色,CBL1512Z,Millipore)和FYG(绿色)在1天(b,cap =毛细血管),脑单核细胞 - 摩托噬细胞浸润单核细胞中,在-Se后3天(C)和细胞在细胞中延伸,并在hilus in-hilus in-hilus in-se(c)和细胞中延长。比例:20 µm。e-n。CD11b(E-I,Cyan,CBL1512Z,Millipore)和CD68(J-N,Green,MCA341GA,Bio-Rad)在SE之后的齿状回中进行了免疫(Ctrl,n = 6; SE+7H,se+7H,n = 4; se+1d,n = 4; se+1d,n = 5; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d;比例:50µm。圆形的CD11b-POSI] VE细胞(J)和CD68-POSI] VE细胞(N)在齿状回中被量化。单向方差分析后,通过Tukey的测试对数据进行分析。数据表示为平均值 + SEM。*:vs. Ctrl。***,p <0.001; ****,p <0.0001。