镍基高温合金是能源和航空航天领域高温应用必不可少的材料。这些材料的增材制造 (AM) 可以为高温部件的设计、功能和制造带来显著益处。然而,由于 AM 制造过程中的开裂问题,只有少数材料经过了尝试和鉴定。本文对 Haynes 282 通过激光粉末床熔合 (LPBF) 的可加工性和性能进行了初步评估,这是一种相对较新的镍基高温合金,其性能优于许多传统的锻造高温合金。结果表明,通过全密度 LPBF 可以制造无裂纹的 Haynes 282。尽管具有明显的各向异性,但其室温下的机械性能超过了参考材料在制造和热处理条件下的性能。 800 ◦ C 下的机械性能表明,LPBF 热处理的 Haynes 282 的屈服强度与参考材料相当,但延展性显著降低。良好的应力断裂性能也表明 Haynes 282 是增材制造的理想选择,特别是如果可以针对增材制造的成品微观结构重新设计热处理工艺。
基本模型,在大规模数据集中培训并使用创新学习方法适应了新数据,已彻底改变了各个领域。在材料科学中,微观结构分割在理解合金特性中起关键作用。但是,常规的监督建模算法通常需要大量注释和复杂的优化程序。分割的任何模型(SAM)介绍了一个新的视角。通过将SAM与域知识相结合,我们提出了一种用于合金图像分割的新型广义算法。该算法可以处理各种合金系统的图像批处理,而无需训练或注释。此外,它可以达到与监督模型相当的分割精度,并在各种合金图像中稳健地处理复杂的相位分布,无论数据量如何。
产前暴露于孕产妇炎症的增长与不良神经发育结局有关,包括非典型的大脑成熟和精神病。在经历社会经济劣势的母亲中,免疫激活可能是这种环境困难所固有的慢性压力的产物。虽然促进临床前和临床证据的发展已经显示出改变了新生儿大脑发育的改变与子宫内炎症状态的增加之间的联系,但社会经济劣势差异影响神经免疫串扰的潜在机制仍然不清楚。在当前的研究中,我们调查了320个因贫困而过采样的母亲二元组中的社会经济劣势,妊娠中肿块和新生儿白质微观结构之间的关联。我们在妊娠过程中分析了四种细胞因子(IL-6,IL-8,IL-10,TNF-α)的产妇血清水平与后代白质微观结构和社会经济缺陷有关的妊娠过程。较高的平均母体IL-6与非常低的社会经济状况(SES; INR <200%贫困线)和较低的新生儿皮质脊髓分数各向异性(FA)和较低的非轴向扩散(AD)有关。没有其他细胞因子与SES相关。较高的平均母体IL-10与Callosum和皮质脊髓区域中的FA较低和较高的径向扩散率(RD)相关,较高的光学辐射RD,下腹部下额叶和较低的FA和下部额叶额叶和较低的FA。SES调节妊娠期间平均母体TNF-α水平与新生儿白质扩散率之间的关系。当分解这些相互作用时,模式表明这种关联在非常低的SES新生儿中是显着和正面的,因此TNF-α与下符号AD成反比和显着相关。相比之下,在更优势的新生儿(较低至高的SES [INR≥200%贫困线])中,TNF-α与上符号AD呈阳性且显着相关。综上所述,这些发现表明,产前细胞因子暴露与白质微观结构之间的关系随SES的函数而不同。这些模式与一个场景一致,即妊娠弹性对白质发育的影响取决于子宫内基础资源的可用性。
晶粒尺寸是确定性的微观结构特征,可以使六角形封闭式(HCP)金属中变形的作用。尽管变形孪生是改善结构合金强度 - 降解性权衡的最有效机制之一,但随着晶粒尺寸的减少,其激活降低。这项工作报告了通过引入延性延展性的以身体为中心的立方体(BCC)纳米层接口的细粒度HCP微结构中变形孪生激活的发现。利用基于激光的添加剂制造的快速凝固和冷却条件,以获得精细的微观结构,并与强化的内在热处理结合使用,允许生成BCC纳米层。原位高能同步加速器X射线衍射允许实时跟踪机械孪生的激活和演变。获得的发现显示了延性纳米层的潜力,用于具有改善寿命跨度的HCP损伤耐受材料的新设计。
全体会议…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………… 16 Battery degradation …………………………………………………………………………………………………………………………………………..… 20 Battery fabrication I ……………………………………………………………………………………………………………………………………………… 26 Data driven battery models …………………………………………………………………………………………………………………………… 32 Battery microstructure ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………” ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………” flow batteries …………………………………………………………………………………………………………………………………………..… 62 PEM-Systems / Degradation …………………………………………………………………………………………………………………………… 68 AEM, PEM and Alkaline Electrolysis ………………………………………………………………………………………………………..… 74 PEM / Microstructure I ……………………………………………………………………………………………………………………………………..… 80 PEM /微观结构II…………………………………………………………………………………………………………………………………………
引言当前,科学界将大量注意力集中在由可再生资源获得的材料上,特别是由天然聚合物及其衍生物获得的材料,例如壳聚糖、胶原蛋白和海藻酸盐。这对于生物医学中使用的材料尤其如此,因为需要保持生物相容性和抗菌性,例如组织工程的多孔支架或封装活性物质的基质 [1, 2]。因此,一个有前景的领域是研制用于透皮给药 ( TDL ) 的贴剂,当材料贴在患者皮肤上时,能够扩散到血液中 [3]。脱乙酰基几丁质衍生物壳聚糖是一种多糖,广泛用于制造生物医学材料,包括 TDL 材料,其形式为多孔海绵、微粒、水凝胶和薄膜 [4]。由壳聚糖制成的聚合物多孔海绵是一种特别方便的皮肤接触材料。矿物无机酸和一些有机酸被用作溶剂,用于将该聚合物加工成新形式的生物材料。生产多孔壳聚糖海绵的“经典配方”包括将壳聚糖(1-2 wt%)溶解在稀乙酸溶液(1-2 vol%)中,冷冻和冷冻干燥 [5]。尽管此类材料中的酸含量较低,但接触时皮肤可能会产生过敏反应。因此,开发加工这种聚合物的新方法并寻找新的溶解介质变得极为重要。
摘要:全固态电池(ASSB)的实际应用需要在低压下可靠运行,这仍然是一个重大挑战。在这项工作中,我们研究了由不同粒径固态电解质(SSE)组成的正极复合微结构的作用。由 LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)和细颗粒 Li 6 PS 5 Cl(LPSC)制成的复合材料在 NCM811 颗粒表面显示出更均匀的 SSE 分布,确保了紧密接触。此外,该复合材料的曲折度降低,从而增强了锂离子传导。这些微观结构优势可显着降低电荷转移电阻,有助于抑制低压条件下循环过程中的机械变形和电化学降解。因此,细 LPSC 正极复合材料在 2 MPa 的中等电堆压力下表现出增强的循环稳定性,优于粗 LPSC。我们的发现证实了微结构设计在实现低压条件下高性能 ASSB 运行中的重要作用。
PA-12 粉末原料中存在的低分子量化合物的高分辨率质谱 (ESI-MS) 分析 PA-12 粉末原料中存在的 CHCl 3 可溶性低分子量物质的 ESI-MS 质谱如图 S2 所示。该质谱是在正离子模式下通过直接注入稀释的 CHCl 3 溶液获得的。文献中之前已详细描述了使用液相质谱法鉴定从聚酰胺材料中迁移出的十二内酰胺单体、二聚体和三聚体物质的方法。1 Irganox 1098 是长链脂肪族聚酰胺材料中常用的抗氧化剂。2
摘要:与化学计量简单的氮化铝 (AlN) 相比,锆钛酸铅薄膜 (PZT) 具有优异的压电和介电性能,是先进微机电系统 (MEMS) 器件中另一种有希望的候选材料。大面积 PZT 薄膜的制造具有挑战性,但需求迫切。因此,有必要建立合成参数与特定性能之间的关系。与溶胶-凝胶和脉冲激光沉积技术相比,本综述重点介绍了磁控溅射技术,因为它具有高度的可行性和可控性。在本文中,我们概述了 PZT 薄膜的微观结构特征、合成参数(如基底、沉积温度、气体气氛和退火温度等)和功能特性(如介电、压电和铁电等)。本综述特别强调了这些影响因素的依赖性,为研究人员通过磁控溅射技术获取具有预期性能的PZT薄膜提供实验指导。
镍基高温合金GH3536广泛应用于航空航天工业,具有良好的强度和抗高温氧化性能。本研究采用选区激光熔化 (SLM) 工艺制备GH3536试件,并进行热处理 (HT),研究了SLM和SLM-HT试件的微观组织、残余应力、拉伸强度和硬度。实验结果表明,由于快速冷却,SLM试件处于过饱和固溶状态,残余拉应力沿制备方向周期性地存在于亚表面。热处理后,富钼碳化物从基体中析出,降低了固溶程度。此外,由于热处理,SLM引起的残余拉应力转化为压应力,亚表面残余应力的周期性分布消失。研究结果表明,热处理抑制了SLM试件的固溶强化和晶界强化,导致硬度和屈服强度降低,断裂伸长率增加53%。本研究可为SLM成形GH3536镍基高温合金的应用提供指导。