通过传播光子耦合孤立的量子系统是量子科学1,2中的一个中心主题,具有开创性应用的潜力,例如分布式,易于故障的量子计算3 - 5。迄今为止,光子已被广泛用于实现高保真远程纠缠6 - 12和州转移13 - 15,通过补偿效率低下的条件,这是一种从根本上概率的策略,对通信率限制了限制。相比之下,在这里,我们在实验上实现了确定性,直接量子状态转移的长期提议16。使用有效的,参数控制的发射和微波光子的吸收,我们显示了按需,高保真状态的转换和两个分离的超导腔量子记忆之间的纠缠。传输速率比任何一个内存中的光子损失率要快,这是复杂网络的基本要求。通过在多光子编码中转移状态,我们进一步表明,使用腔记忆和与状态无关的转移会产生引人注目的操作性,从而确定性地减轻传输损失,并纠正量子误差。我们的结果为跨网络确定性量子通信建立了令人信服的方法,并将实现超导量子电路的模块化缩放。直接量子状态转移是一种快速而确定性的方案,用于与量子网络中传播光子的量子通信16。在此协议中,发送节点以形状的光子波袋排放量子状态,然后被接收节点吸收。这需要在光与物质之间进行强,可调节的效果,以及在共享通信频率下的有效传递;到目前为止,由于光子耦合和传递8的效率低下,光网络中的状态转移已经高度概率。相比之下,超构型微波电路可以将低损耗与强耦合结合在一起。这个平台非常适合实现按需状态转移,因此可以以模块化的方式扩展量子设备。为此,成功接口的微波记忆和传播模式已成功实现受控的光子发射17 - 20和吸收21 - 23。由于需要高效,频率匹配的光子传输所带来的困难,因此,确定性量子在距离处的目标仍然难以捉摸。
本微波频率半导体放大器和振荡器数据表格由美国国家标准局电子器件数据服务处编制。该服务处成立于 1948 年,旨在向该局工作人员提供电子管技术数据,后来服务范围扩大到政府和工业界的其他科学家和工程师。在此项目实施过程中,大量有关电子管和半导体器件的信息被积累在穿孔卡片上。为了使这些信息更容易获得,设计了一个系统,能自动将数据制成手册。目前的表格包括《微波管数据表格》,NBS 手册 104(1967 年);《接收管数据表格》,NBS 手册 103(1967 年);《东欧电子器件数据表格》,NBS 报告 9925(1968 年);以及《截至 1967 年 10 月苏联电子设备已出版数据汇总》,NBS 技术说明 441,目前正在更新。
为了将以前未开发的电磁波谱部分用于丰富的复杂新服务(通信),需要在对流层中测量无线电折射率的微小变化。关于地球大气边界层(与大陆和海洋直接热接触和摩擦接触的空气)无线电折射率精细结构的高分辨率信息可用于许多应用,例如航天器跟踪、卫星导航、无线电干涉测量、遥感等。最新的发展使得我们能够通过现场和遥感技术在所有重要的空间和时间尺度上研究大气的这一区域。由于传统气象系统(如无线电探空仪、投投探空仪等)的内在缺陷,无线电折射率的大多数急剧梯度都被消除了。机载微波折射仪是一种非常精密的仪器,可以近乎实时地提供无线电折射率的精细结构信息数据。它的垂直高度分辨率约为一米或更低。它是唯一适合获取亚折射和超折射以及管道发生统计数据的仪器,可用于无线电和雷达操作的实时评估。该折射仪有助于了解热带边界层的微物理特性以及设计厘米波和毫米波无线电系统。该地区的物理特性是非平稳的,因为该地区的特点是存在温度和湿度逆变,这会导致无线电折射率以层的形式出现严重的不均匀性。这种高分辨率无线电气候信息在印度几乎不存在。为了收集此类信息,本文作者开发了一种机载微波折射仪(Sarma 等人,1975 年),并在后来几年考虑到工程和航空电子方面改进了设计,并于 1983 年、1985 年和 1988 年进行了飞行测试。
摘要。在为未来的 L 波段被动微波土壤水分卫星任务做准备时,研究人员使用了地面、飞机和卫星传感器。在卫星传感器中,只有一种仪器在 L 波段提供任何遗产:20 世纪 70 年代运行的 Skylab S-194 仪器。在这里找到并恢复了来自 S-194 的数据集。这些 Skylab 任务的数据已在少数应用中进行了分析和报告,但是,这些研究使用了有限的验证,并且仅利用了收集到的部分数据。在本次调查中,我们探索了使用气候模型再分析项目的产品作为辅助或替代验证数据。分析表明,再分析输出不准确,价值有限。使用基于辐射传输的土壤水分检索算法进行的测试与可用于验证的观测结果相匹配。这些结果支持使用这种方法作为工具来了解更广泛的植被条件对土壤水分检索的影响。
干扰预测的一个基本问题(实际上所有对流层预测程序都存在这个问题)是难以提供一套统一的、一致的实用方法,涵盖广泛的距离和时间百分比;即对于真实大气,随着气象和/或路径条件的变化,一种机制的主导统计数据逐渐融入另一种机制。特别是在这些过渡区域,给定的信号水平可能会出现在总时间百分比中,该百分比是不同机制的总和。本程序中的方法是刻意将干扰水平的预测与不同的传播机制分开,直到它们可以组合成路径的整体预测。