简介。— 生成非经典玻色子态 [1 – 3],例如压缩光、福克态和薛定谔猫态,不仅对量子力学的基础研究很重要,而且对量子技术的应用也很重要 [2,4 – 6]。例如,相空间中具有离散平移或旋转对称性的玻色子态 [7 – 14] 已被提议用于编码量子信息 [15 – 20],为硬件高效的量子纠错铺平了道路 [21 – 24]。可以通过例如交错的选择性数字相关任意相位 (SNAP) 和位移门 [25 – 27] 来制备和稳定玻色子代码态以防止耗散。最近的一系列研究 [28 – 31] 指出了一种基于汉密尔顿工程的替代被动控制方法,该方法可用于促进容错操作,例如通过抑制相位翻转错误 [28]、动态抑制与环境的耦合 [30] 以及加速代码字的状态准备 [31] 。汉密尔顿工程的另一个感兴趣领域是拓扑。由于相空间的非交换性质,在封闭的相空间环上移动的量子粒子获得类似于磁场中粒子的 Aharonov-Bohm 相的几何相。因此,相空间中的带隙格子汉密尔顿可以支持非平凡的陈数 [16,32 – 40] 。这是一个很有吸引力的特性,因为在具有物理边界的系统中,它将导致拓扑稳健的边缘传输。虽然已经展示了如何生成
我们研究并行性如何加速量子模拟。提出了一种并行量子算法来模拟一大类具有良好稀疏结构的汉密尔顿量的动力学,这些汉密尔顿量称为均匀结构汉密尔顿量,其中包括局部汉密尔顿量和泡利和等各种具有实际意义的汉密尔顿量。给定对目标稀疏汉密尔顿量的 oracle 访问,在查询和门复杂度方面,以量子电路深度衡量的并行量子模拟算法的运行时间对模拟精度 ϵ 具有双(多)对数依赖性 polylog log(1 /ϵ )。这比以前没有并行性的最优稀疏汉密尔顿模拟算法的依赖性 polylog(1 /ϵ ) 有了指数级的改进。为了获得这个结果,我们基于 Childs 的量子行走引入了一种新的并行量子行走概念。目标演化幺正用截断泰勒级数近似,该级数是通过并行组合这些量子行走获得的。建立了一个下限Ω(log log(1 /ϵ )),表明本文实现的门深度对ϵ 的依赖性不能得到显著改善。我们的算法被用来模拟三个物理模型:海森堡模型、Sachdev-Ye-Kitaev 模型和二次量子化的量子化学模型。通过明确计算实现预言机的门复杂度,我们证明了在所有这些模型上,我们的算法的总门深度在并行设置下都具有 polylog log(1 /ϵ ) 依赖性。
•脑膜炎会导致大脑和脊髓肿胀,从而导致大脑损伤,耳聋,癫痫发作甚至死亡。这种疾病通过唾液和体液传播。接吻,打喷嚏,咳嗽和共享食物,饮料和餐具。•疫苗在青少年中有效80%-85%。•这种疫苗需要儿童上学,除非他们有有效的豁免。•在安大略省,第一个脑膜炎疫苗是在12个月(MEN-C-C)保护您的孩子免受一种菌株的。这种7级疫苗(MEN-C-ACYW135)可预防4种菌株2。•成分:含有脑膜炎球菌菌株A,C,Y和W-135,破伤风毒素蛋白载体,氯化钠,磷酸钠,二元,无水,无水,磷酸钠单微生物和水4,12。•选择不为Men-C-Acyw135疫苗接种疫苗的父母必须完成有效的豁免。该表格必须被公证,并将其带入公共卫生。
孤立的量子力学系统的哈密顿量决定了其动力学和身体行为。这项研究研究了学习和利用系统的哈密顿量及其对数据分析技术的变异热状态估计的可能性。为此,我们采用了基于量子的哈密顿模型的方法来模拟大型强子撞机数据的生成建模,并证明了此类数据等混合状态的代表性。在进一步的一步中,我们使用学到的哈密顿量检测进行异常检测,表明不同的样本类型可以形成一旦被视为量子多体系统的不同动态行为。我们利用这些特征来量化样本类型之间的差异。我们的发现表明,可以在机器学习应用程序中使用专为现场理论计算设计的方法来在数据分析技术中采用理论方法。
侧重于用于量子模拟的通用量子计算,并通过晶格规定的检查,我们引入了相当通用的量子算法,这些算法可以有效地模拟与多个(Bosonic和Fermionic)量子数的相关变化的某些类别的相互作用,该相互作用具有非构成功能系数的量子数。尤其是,我们使用单数值分解技术分析了哈密顿术语的对角线化,并讨论如何在数字化的时间进化运算符中实现已实现的对角线单位。所研究的晶格计理论是1+1个维度的SU(2)仪表理论,该理论与一个交错的费米子的一种味道结合在一起,为此提供了在不同的综合模型中进行完整的量子资源分析。这些算法被证明适用于高维理论以及其他阿贝尔和非阿布尔仪表理论。选择的示例进一步证明了采用有效的理论表述的重要性:显示出,使用循环,弦乐和强体自由度使用明确的计量不变的配方,可以模拟算法,并降低了与基于Angular-Momentum以及Schwinger-Momentum以及Schwinger-boson-boson Boson drefere的标准配方的成本。尽管挖掘仿真不确定,但循环 - 弦 - 弦 - 弦 - 弦 - 弦乐制剂进一步保留了非亚伯仪对称性,而无需昂贵的控制操作。这种理论和算法考虑因素对于量化与自然相关的其他复杂理论可能至关重要。
权力进程。在 Netflix,我们积极地优先考虑我们的注意力,以便专注于现在必须完成的事情。这也适用于战略:近期的战略要务是什么?不幸的是,现有的战略框架提供的指导很少。人们认识到这是一个重要的问题,但其他框架都无法以系统、可靠、足够透明的方式解决它。汉密尔顿如何应对这一空白?几十年来,他开发并完善了权力进程,说明了商人面临的每场竞争战的大致时间点。这是战略思维实用性的非凡进步。
• 我们展示了 QPCP 的一个先决条件:一个显式局部哈密顿量,其低能态都需要 ω (log n ) T 门,也就是说,它们非常不稳定。事实上,我们展示了一个更强的结果,即低能态需要 Ω( n ) T 门,而这不一定是 QPCP 所暗示的。
有关哈密顿路径的背景信息:汉密尔顿路径的概念来自图理论的数学领域。以爱尔兰数学家和物理学家威廉·罗恩·汉密尔顿(William Rowan Hamilton)的名字命名的汉密尔顿路径,[8]是一条仅访问图中每个顶点的路径[15]。简单地将图形视为节点或顶点的集合,然后用边缘连接这些顶点。汉密尔顿路径是一条以一个顶点开始,精确地访问所有其他顶点,并以另一个顶点结束[1]。它本质上是在整个图表中循环的,而无需重复。哈密顿路径与图理论“哈密顿周期”中的另一个概念密切相关。虽然一条汉密尔顿路径完全访问了每个顶点一次,但不一定要以同一顶点开始和结束,但汉密尔顿圆圈形成了一个封闭环,仅访问每个顶点一次,然后以同一顶点[20]理解和研究汉密尔顿路径在诸如数学,计算机科学和网络分析等各种领域具有重要意义。在这项研究中,我们讨论了Hamiltonian途径在DNA和蛋白质测序中的应用。DNA测序确定DNA分子中核苷酸的顺序[17]。探索哈密顿道路及其特征的重要性有多种理由。1。优化问题的有效性:首先,重要的是要注意,图中的哈密顿路径代表提供最高优化级别的最终路径或序列。这在各种实际应用中具有巨大的价值,例如物流计划,调度,解决旅行者问题以及确定多个位置之间最迅速或最有效的途径。
使用一个充分理解的量子系统模拟另一个不太了解的量子系统的想法具有悠久的历史[1]。随着量子信息技术的最新发展,它吸引了许多研究领域。在核和粒子物理学区域,量子模拟吸引了显着但仍在增长的研究兴趣[2-42],因为它的潜力避免了符号问题,从而阻碍了传统的数值方法来计算构成标准模型基础的规范理论的实时动力学。仪表理论是相对论量子场理论在局部量规传输下不变的。局部规格不变性在近期量子计算机上有效,准确地模拟量规理论带来了许多挑战。在许多哈密顿的晶格仪理论中,例如Kogut-susskind Hamiltonian [43],量子链接模型[44,45]和循环 - 弦乐 - 哈德隆公式[46 - 48],相互作用是局部的,并非所有与物理状态相对应的局部自由度。只有满足当地仪表不变性(高斯定律)的状态是物理的。结果,量子硬件中的噪声或量子算法所构图(例如Trotterterization误差)可能会导致模拟中的非物理结果。许多通用误差缓解技术,例如零噪声CNOT外推[49 - 51]不足以完全恢复物理结果,因为算法的门忠诚度和系统误差有限[10]。有许多研究试图解决这个问题,例如整合了高斯定律(例如,参见参考文献[52,53]),添加了违反规格的惩罚项[54 - 61],使用动态驱动器和量子控制的不同规格选择(所谓的“ dy-Namical Declopling” [62]),使用对称性保护[63]和命中后[64],以及