## ## 10倍(嵌套)交叉验证的性能度量与使用所有数据无需交叉验证计算的幼稚摘要## ## ## ave devrat ave slope ave concordance ave ave非零零## lasso min 0.2452 1.0702 0.8702 0.8730 48.0 ## lasso min 0.244.084.084 0.244.084 0.2452 minR.G0 0.2435 0.9451 0.8733 16.8 ## Ridge 0.2256 1.2887 0.8660 99.0 ## Naive DevRat Naive Concordance Non Zero ## LASSO min 0.1696 0.8794 42 ## LASSO minR 0.1710 0.8791 20 ## LASSO minR.G0 0.1663 0.8759 13 ## Ridge 0.1718 0.8822 99 ## ## Ave DevRat Ave Slope Ave Concordance Ave Non Zero ## Stepwise df tuned 0.2541 0.9741 0.8776 14.7 ## Stepwise p tuned 0.2549 0.9775 0.8786 15.0 ## Naive DevRat Naive Concordance Non Zero ## Stepwise df tuned 0.1711 0.8785 15 ##逐步调谐0.1711 0.8785 15
酒精毒性会显著影响工业生产的生物燃料的滴度和生产力。为了克服这一限制,我们必须找到并使用策略来提高生产菌株的抗压性。之前,我们开发了一个多重导航全局调控网络 (MINR) 库,该库针对 25 个调控基因,这些基因预计会在不同压力条件下改变酵母的全局调控。在本研究中,我们扩展了这一概念,使用饱和诱变库针对 47 个转录调节因子的活性位点。这 47 个目标调节因子与一半以上的酵母基因相互作用。然后,我们筛选并选择了 C3-C4 酒精耐受性。我们确定了对异丙醇和异丁醇具有抗性的特定突变体。值得注意的是,WAR1_K110N 变体提高了对异丙醇和异丁醇的耐受性。此外,我们研究了提高异丙醇和异丁醇胁迫耐受性的机制,发现与糖酵解相关的基因在对异丁醇的耐受性中发挥作用,而 ATP 合成和线粒体呼吸的变化在对异丁醇和异丙醇的耐受性中发挥作用。总的来说,这项研究揭示了异丙醇和异丁醇毒性的基本机制,并展示了一种通过扰乱转录调控网络来提高对 C3-C4 醇耐受性的有前途的策略。