摘要:要开发用于自适应光学 (AO) 系统的高性能控制器,首先必须推导出足够精确的可变形镜 (DM) 状态空间模型。然而,开发考虑系统阻尼、执行器动力学、边界条件和影响系统动力学的多物理现象的逼真的大规模有限元 (FE) 状态空间模型通常具有挑战性。此外,建立一个能够自动快速推导出不同执行器配置和系统几何形状的状态空间模型的建模框架也具有挑战性。另一方面,为了实现精确的基于模型的控制和系统监控,通常需要从实验数据中估计状态空间模型。然而,这是一个具有挑战性的问题,因为 DM 动力学本质上是无限维的,并且具有大量的特征模态和特征频率。在本文中,我们提供了解决这些挑战的建模和估计框架。我们开发了一个面板 DM 的 FE 状态空间模型,该模型结合了阻尼和执行器动力学。我们研究了不同模型参数的频域和时域响应。使用 COMSOL Multiphysics 软件包中包含的 LiveLink for MATLAB 工具箱,状态空间建模过程完全自动化。开发的状态空间模型用于生成估计数据。该数据与子空间识别算法一起用于估计降阶 DM 模型。我们解决了模型阶数选择和模型验证问题。本文的结果为广大 AO 和机电一体化科学界提供了必要的建模和估计工具。开发的 Python、MATLAB 和 COMSOL Multiphysics 代码可在线获取。
空间FSM开发的光学通信的主要挑战是提出技术和供应链,与大量新空间方法相关,这需要对高速互联网,地球行星观察和监测以及移动性应用的安全连通性。CTEC提出了一种Mini-FSM技术,可提供+/- 6 MRAD的中风和1700 Hz的谐振频率,质量为50 gr。这种FSM机制是巨型星座以及板纳米人和立方体上所有应用的良好候选者,具有非常高的小型化水平,并且针对新的空间高量成本效率进行了优化。使用压电执行器的使用提供了很高的共振频率,以实现最佳控制,几乎零功耗的步骤和保持指向,并且在CTEC的optronics应用程序的多年反复制造中,非常高的可靠性数字> 0,995。1简介
这是作者接受的稿件,未经编辑、格式化或最终修改。最终稿件将发表在即将出版的《英国科学哲学杂志》上,该杂志由芝加哥大学出版社代表英国科学哲学学会出版。引用或引用时请包含 DOI:https://doi.org/10.1086/714960 版权所有 2021 英国科学哲学学会。
“在出生过程中,婴儿可能会以许多不自然的方式扭曲。这种创伤可能是一生中许多身体和精神问题的根源。很多次父母在孩子成长的某些阶段生病时,医生会告诉他们不要担心,因为孩子会超越它。在理想的世界中,孩子会。但是,情况并非总是如此。经常发生的是孩子学会弥补自己的局限性。直到孩子在学校变得更加挑战之前,没有人会感到关心,并且很明显孩子在认知或良好的运动技能方面存在问题。那时,已经错过了发展阶段,并且浪费了宝贵的治疗时间。许多可能已被纠正的事情现在可能需要更长的时间,并且可能会带来终生的后果。”
风振对双子座 8m 主镜的影响 Myung K. Cho 1,2 、Larry Stepp 1 和 Seongho Kim 3 (1)双子座 8m 望远镜项目;(2)亚利桑那大学光学科学中心;(3)亚利桑那大学航空航天和机械工程学院 摘要 大型望远镜的关键设计因素之一是控制由风压变化引起的主镜畸变。为了量化望远镜风荷载效应,双子座天文台在实际山顶条件下进行了一系列风试验。在南双子座望远镜的调试期间,同时测量了镜面多个点的压力,以及穹顶内外多个位置的风速和风向。在测试期间,我们改变了穹顶相对于风的位置、望远镜仰角、挡风玻璃在观测狭缝中的位置以及通风门的开口大小。针对 116 种不同的测试条件,以每秒十次的数据采样率记录了五分钟的数据。这些数据集经过处理,可提供每个时刻镜面上的压力图。根据这些压力图,使用有限元分析计算主镜的光学表面畸变。开发了数据缩减程序,以增强测试数据和镜面畸变的可视化。测试结果对
摘要。我们提出了一项全面的数值研究,对梁导演望远镜的主镜上的热诱导的光差。尤其是我们研究了高功率激光诱导的变形,导致的单色畸变及其对成像和激光聚焦的影响,在共享的孔径束主系统中,原代望远镜镜的性能。作为一个实际的例子,我们考虑了一个基于6×4 kW的单模高功率激光源和具有500 mm圆形透明孔径的主镜。单色畸变的详细组合及其对光学性能的影响是为硼硅酸盐和Zerodur®基材提供的,具有相同的反射涂层,用于电流激光束主管的应用。我们的分析表明,使用Athermal底物(即Zerodur®),高功率激光器可以有效地指向具有高反射性涂层(> 99.9%)的主镜子的成像降解。另一方面,只有在严格控制的环境温度下,具有相对较高的热膨胀系数(即硼硅酸盐)的底物才能有效使用。©2021光学仪器工程师协会(SPIE)[doi:10.1117/1.oe.60.6.6.065102]
对于现代量子光学的各种应用,无论是在实验学术研究和商业量子技术中,都需要与光学谐振器的量子发射器的强耦合,并且同时在此谐振器中同时长期光子寿命很重要。满足这些实际应用这些要求的一些最有前途的系统是纤维上的微腔[1-4],离子束蚀刻的介电谐振器[5]或微型组装结构[6]。可以通过紧密定位单个腔光子光子(即使腔非常小)来实现量子发射极与光学循环的强耦合。但是,对于大多数逼真的量子信息处理方案,需要从侧面对发射极的光学访问,例如,用于光学冷却[7],状态准备和最终状态读数[8]。,将原子或离子传递到腔内的通道,并且将诱捕结构的整合到腔内可能会对骑士长度施加进一步的约束。在离子陷阱量子计算的情况下[9],形成腔的介电镜还可以散布由于其电敏感性而捕获离子所需的射频频率,并且由于其面部电荷而导致的,如果它们离陷阱电极太近[10,11]。总体而言,因此需要在量子信息应用中使用的光腔,以将强耦合速率与低损失相结合,同时还可以使镜子足够分开。让我们首先审查主参数,以使光谐振器与单个细胞进行强耦合。我们在这里工作的目的是提出一种新方法来实现这些要求,从球形镜的范式转移到与标准高斯模式相比,具有更好的配置属性的工程师光腔模式。在两级发射极之间的相干耦合,例如量子点,离子或冷原子,位于具有光学场模式E(r)的腔坐标为r,其特征是强耦合
摘要 目的:患者来源的异种移植(PDX)模型在临床前和转化应用中显示出巨大的潜力,但它们与原发性肿瘤在表型、遗传和药效动力学异质性的一致性尚未得到充分研究。本研究旨在建立非小细胞肺癌(NSCLC)的PDX库,并进一步阐明它是否能保留患者肿瘤内和肿瘤间的异质性。方法:将75例手术切除的NSCLC标本植入免疫缺陷的NOD/SCID小鼠体内。在成功建立NSCLC PDX模型的基础上,我们采用苏木精和伊红染色和免疫组织化学染色比较了癌组织和PDX模型之间波形蛋白、Ki67、EGFR和PD-L1蛋白的表达。此外,我们检测了原发性肿瘤和PDX代之间的全基因表达谱。我们还对 17 个第一代异种移植瘤进行了全外显子组测序 (WES) 分析,以进一步评估 PDX 是否保留了患者的异质性。最后,使用紫杉醇、顺铂、阿霉素、阿替利珠单抗、阿法替尼和 AZD4547 评估 PDX 模型对标准治疗药物的反应。结果:成功开发了大量可连续移植的 NSCLC PDX 模型。PDX 异种移植瘤的组织学和病理免疫组织化学与患者的肿瘤样本一致。WES 和 RNA-seq 进一步证实 PDX 准确复制了原发性肿瘤的分子异质性。与临床患者相似,PDX 模型对标准治疗(包括化疗、靶向和免疫治疗)的反应不同。结论:我们建立的 NSCLC PDX 模型忠实地再现了分子、组织病理学和治疗特征以及相应的肿瘤异质性,为药物筛选、生物标志物发现和转化研究提供了临床相关平台。关键词 患者来源的异种移植 (PDX);非小细胞肺癌 (NSCLC);肿瘤异质性
本文讨论了俄罗斯入侵乌克兰的观察和影响。尽管称其为“经验教训”有些鲁莽,但第二次世界大战以来欧洲最激烈的战斗提供了一些见解,应该为国防理论、装备和训练提供参考。首先,战争仍然是一种昂贵的消耗性活动,军队需要耗费大量的装备、弹药和补给。由于现代武器需要高科技制造,因此它们比以前的设备需要更多时间;大规模生产它们很困难,库存和部署它们所需的能力至关重要。其次,训练有素的部队仍然比技术或物资不对称更重要。意志力很重要。1 俄罗斯最初的入侵似乎是以大规模部署来克服训练和后勤不足为前提的,但未能抵挡住乌克兰军队和平民的有效抵抗,而这种抵抗部分是由北约自 2014 年以来提供的援助和训练所建立起来的。俄罗斯训练和部队结构中的问题加剧了战备报告系统的缺陷,该系统因无能、裙带关系和恐惧而受到破坏。第三,安全、分布式和冗余通信系统的扩散增强了信息收集的能力,同时允许部队保持分散和灵活性(如果使用得当)。现代通信网络增加了对错误的惩罚,这种趋势可以追溯到第一次世界大战。现代战场会让进攻机动变得乏味,除非得到欺骗行动的充分支持。传感器、无人机系统、便携式导弹和远程火力的激增使得战场对于难以隐藏的机械化车辆来说越来越致命。2