。CC-BY-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。此版本的版权持有者于 2022 年 1 月 20 日发布。;https://doi.org/10.1101/2021.09.30.462548 doi:bioRxiv 预印本
1 Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA 2 Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA 3 Cryos International Sperm and Egg Bank, Denmark 4 Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, USA 5 Program美国病儿童医院彼得·吉尔根研究与学习中心,加拿大6. ‡对应:gilad.evrony@nyulangone.org摘要突变在整个生命的每个细胞的基因组中都积累,导致癌症和其他遗传疾病1-4。几乎所有这些镶嵌突变始于DNA的两条链中的核苷酸不匹配或损伤,如果未经修复或误用5。但是,当前的DNA测序技术无法解决这些初始的单链事件。在这里,我们开发了一种单分子的长读测序方法,该方法在存在于DNA的一条或两条链中时,可以实现单基分子的单分子保真度。它还检测到单链胞嘧啶脱氨酸事件,这是一种常见的DNA损伤。我们介绍了来自不同组织的110个样本,包括来自患有癌症的个体综合症的个体,并定义了第一个单链不匹配和损害特征。我们找到了这些单链特征与已知的双链突变特征之间的对应关系,从而解决了起始病变的身份。与仅缺乏聚合酶校对的样品相比,在不匹配修复和复制性聚合酶校对缺乏的肿瘤均显示出独特的单链错配模式。在线粒体基因组中,我们的发现支持一种主要发生在复制过程中的诱变机制。由于先前研究询问的双链DNA突变只是突变过程的终点,因此我们在单分子分辨率下检测启动单链事件的方法将启用有关在多种情况下突变如何在癌症和年龄中出现的新研究。
摘要 背景 错配修复缺陷 (dMMR) 是免疫检查点阻断 (ICB) 反应的一个公认的生物标志物。将 MMR 熟练 (pMMR) 转化为 dMMR 表型以使肿瘤对 ICB 敏感的策略受到高度追捧。含溴结构域 4 (BRD4) 抑制和 ICB 的结合提供了有希望的抗肿瘤作用。然而,其潜在机制仍然未知。在这里,我们发现 BRD4 抑制会在癌症中诱导持续的 dMMR 表型。方法我们通过对癌症基因组图谱和临床蛋白质组肿瘤分析联盟数据进行生物信息学分析以及对卵巢癌标本的免疫组织化学 (IHC) 评分进行统计分析,证实了 BRD4 与错配修复 (MMR) 之间的相关性。通过定量逆转录 PCR、蛋白质印迹和 IHC 测量 MMR 基因 (MLH1、MSH2、MSH6、PMS2)。通过全外显子组测序、RNA 测序、MMR 检测和次黄嘌呤-鸟嘌呤磷酸核糖转移酶基因突变检测确认 MMR 状态。在体内和体外诱导 BRD4i AZD5153 耐药模型。通过细胞系之间的染色质免疫沉淀和来自 Cistrome 数据浏览器的数据研究了 BRD4 对 MMR 基因转录的影响。在体内证明了对 ICB 的治疗反应。通过流式细胞术测量了肿瘤免疫微环境标志物,例如 CD4、CD8、TIM-3、FOXP3。结果我们在转录和翻译方面确定了 BRD4 和 MMR 基因之间的正相关性。此外,BRD4 转录抑制会降低 MMR 基因表达,导致 dMMR 状态和突变负荷升高。此外,长期暴露于 AZD5153 可在体内和体外促进持久的 dMMR 特征,增强肿瘤的免疫原性,并且尽管获得了耐药性,但仍增加了对 α - 程序性死亡配体-1 疗法的敏感性。
抽象背景不匹配修复缺乏(DMMR)和微卫星不稳定性高(MSI-H)出现在癌症的子集中,并已证明对免疫检查点抑制(ICI)具有敏感性;但是,尿路上皮癌(UC)缺乏前瞻性数据。方法和分析我们进行了系统的审查,以估计UC中DMMR和MSI-H的患病率,包括生存和临床结果。我们搜索了2022年10月26日在主要科学数据库中发表的研究。我们筛选了1745项研究,其中包括110。荟萃分析。结果,膀胱癌(BC)和上游UC(UTUC)中DMMR的汇总加权率为2.30%(95%CI 1.12%至4.65%)和8.95%(95%CI 6.81%至11.67%)。BC和UTUC中MSI-H的合并加权流行率分别为2.11%(95%CI 0.82%至5.31%)和8.36%(95%CI 5.50%至12.53%)。比较局部疾病与转移性疾病,BC中MSI-H的合并加权流行率为5.26%(95%CI 0.86%至26.12%)和0.86%(95%CI 0.59%至1.25%);在UTUC中,它们为18.04%(95%CI 13.36%至23.91%)和4.96%(95%CI 2.72%至8.86%)。累积地,用ICI处理的DMMR/MSI-H转移性UC的反应率为22/34(64.7%),而化疗为1/9(11.1%)。结论DMMR和MSI-H在UTUC中比在BC中更频繁地发生。在UC中,MSI-H在局部疾病中比转移性疾病更频繁地发生。在UC中,MSI-H在局部疾病中比转移性疾病更频繁地发生。这些生物标志物可以预测转移性UC中ICI的敏感性以及对基于顺铂的化学疗法的抗性。
摘要电荷泵(CP)广泛用于现代相锁环(PLL)实现中。CP电流不匹配是PLL输出信号中静态相位和参考启动的主要来源。在本文中,提出了一个在较大输出电压范围内具有小电流不匹配特性的新型CP。专门设计的双重函数电路使用统一反馈操作放大器和电流镜子,以减少当前不匹配的输出电压,直到电源电压(V DD)或接地(GND)。和其他反馈晶体管用于减少频道长度调制效果的影响。延迟仿真结果表明,在40 nm CMOS技术中提出的CP的外电流为115 µA。此外,当前的不匹配小于0.97 µ a或0.84%的输出电压范围为0.04至1.07 V,覆盖1.1 V电源的93.6%以上。因此,所提出的CP最大化动态范围,并减少CP-PLL的相位集合和参考启动。关键字:电荷泵,当前的不匹配,动态范围,相锁定的环路分类:集成电路(内存,逻辑,模拟,RF,传感器)
Sequence Myerrpiaql Pdlisqiaa Gevierpaasv LKEIINAID AGARAIERL EGGIRRIAIV SDDGFAPGIPE ELPLAVAQHA TSKIRSLSEL ESVASMGFRG EALASISVA RLTIISRVRN GDHAWQIDAS SGEISPASGP PGTTVDVROQL FDNVParRKF LRSEATEFGH CLDALERIAL APQIAFRLF HHDKAQRQRQWL PADPGQRARD VLGAEFAGQA LPVDTRYGAI GLMGMVTRPT A Thearadrqy Lyvngryvrd Rtvshalrsa Yadvlhgdrq Payvlylevd Paavdvnvhp akhevrfrds Gavhrfvsqv Vgqalaqgg Aqaldaedp Pepirpetpp ppspaaaaal psapaqppapa Pypsrphsqm PFRLQepagv Sardwqlyr Plaepgatpq Tadrpqaaap Arlvseeehp lgmalgqlhg vyilaqnarg lvlvdmhaah Ervvyeqlkh aldersslprq dlvfvffha qekdvalaee yaeqlselgf emrpsgptsi avrsvapalla rgdieglara vlrdlgavga sqlteqrne llstmachgs vranrrrrrrrrrrrlrlrlrrlrrlrlrrlrlrlrlrlrlrrlrlrlrqmeqmeqmqmqmqmqmqmqmqmqmqcccmqcccccccccwiqwiqwiqwiqwiqwiqwiqwiqwiqwtv ndldldklfllg qSequence Myerrpiaql Pdlisqiaa Gevierpaasv LKEIINAID AGARAIERL EGGIRRIAIV SDDGFAPGIPE ELPLAVAQHA TSKIRSLSEL ESVASMGFRG EALASISVA RLTIISRVRN GDHAWQIDAS SGEISPASGP PGTTVDVROQL FDNVParRKF LRSEATEFGH CLDALERIAL APQIAFRLF HHDKAQRQRQWL PADPGQRARD VLGAEFAGQA LPVDTRYGAI GLMGMVTRPT A Thearadrqy Lyvngryvrd Rtvshalrsa Yadvlhgdrq Payvlylevd Paavdvnvhp akhevrfrds Gavhrfvsqv Vgqalaqgg Aqaldaedp Pepirpetpp ppspaaaaal psapaqppapa Pypsrphsqm PFRLQepagv Sardwqlyr Plaepgatpq Tadrpqaaap Arlvseeehp lgmalgqlhg vyilaqnarg lvlvdmhaah Ervvyeqlkh aldersslprq dlvfvffha qekdvalaee yaeqlselgf emrpsgptsi avrsvapalla rgdieglara vlrdlgavga sqlteqrne llstmachgs vranrrrrrrrrrrrlrlrlrrlrrlrlrrlrlrlrlrlrlrrlrlrlrqmeqmeqmqmqmqmqmqmqmqmqmqcccmqcccccccccwiqwiqwiqwiqwiqwiqwiqwiqwiqwtv ndldldklfllg q
摘要:三磷酸腺苷(ATP)产生的模块由光驱动的质子泵启用是人造细胞样系统的自下而上组装的强大工具。然而,这种模块的最大效率是通过在重组过程中质子泵的随机取向进入脂质的纳米结构剂的最大效率。在这里,我们使用多功能方法克服了这种限制,以均匀地定向脂质体中轻驱动的质子泵蛋白淡季(PR)。PR在插入到预先形成的脂质体中时,在后翻译上是共价或非共价耦合的。在第二种情况下,我们开发了一种新型的双功能连接器Tris NTA-SPYTAG,该连接器允许任何含有间谍捕捉蛋白的蛋白质和携带组合携带的蛋白质的可逆连接。通过监测矢量质子泵送和膜电位产生来验证所需的蛋白质取向。与ATP合酶结合使用,高效的ATP产生由内向抽水的种群充满电。与其他照明驱动的ATP产生模块相比,均匀方向允许在经济蛋白质浓度下最大值。提出的技术是高度定制的,不仅限于轻型质子泵,但适用于许多膜蛋白,并提供了一种一般的方法来克服膜重建过程中取向不匹配,几乎不需要对蛋白质的遗传修饰。关键词:能量转换,合成生物学,ATP合成,膜蛋白取向,脂质体,轻驱动质子泵■简介
当前的临床指南建议将不匹配修复(MMR)蛋白免疫组织化学(IHC)或分子微卫星不稳定性(MSI)测试作为免疫疗法的预测标记。大多数病理指南都将MMR蛋白IHC视为黄金标准测试,以鉴定具有MMR缺乏症的癌症,并仅建议在特殊情况下进行分子MSI测试或筛查林奇综合征。但是,文献中有一些数据表明两种测试类型可能不相等。例如,分子流行病学研究报告了各种癌症类型中有缺乏的MMR(DMMR)和MSI的速率不同。此外,对这两种测试的直接比较表明,MMR IHC和MSI测试之间的差异相对频繁,尤其是在非直肠直肠癌和非内膜癌症中,对于异常的DMMR表型。也有分散的临床数据表明,如果患者选择基于DMMR与癌症的MSI状态,则免疫检查点抑制剂的效率是不同的。所有这些观察结果都提出了当前的教条,即DMMR表型和遗传MSI状态是免疫疗法的相等预测标记。
稿件于 2022 年 1 月 27 日收到;于 2022 年 3 月 15 日接受。出版日期 2022 年 3 月 21 日;当前版本日期 2022 年 5 月 27 日。这项工作部分由中国国家重点研发计划资助(资助号 2019YFB1310000),部分由中国澳门科学技术发展基金资助(文件编号 0052/2020/AGJ & SKL-AMSV(UM)-2020-2022)。副主编 E. Bonizzoni 推荐了这篇简介。(通讯作者:Sai-Weng Sin。)Mingqiang Guo 和 Sai-Weng Sin 就职于澳门大学模拟与混合信号超大规模集成电路国家重点实验室、微电子研究所和 FST-ECE(电子邮件:mqguo@um.edu.mo;terryssw@um.edu.mo)。 Liang Qi 和 Guoxing Wang 就职于上海交通大学微纳电子学系,上海 200240,中国(电子邮件:qi.liang@sjtu.edu.cn;guoxing@sjtu.edu.cn)。Dengke Xu 就职于珠海安微半导体有限公司,珠海 519000,中国(电子邮件:sunny.xu@amicro.com.cn)。Rui P. Martins 就职于模拟与混合信号超大规模集成电路国家重点实验室、微电子研究所和澳门大学 FST-ECE,澳门,中国,现就职于里斯本大学高等技术学院,里斯本 1049-001,葡萄牙(电子邮件:rmartins@um.edu.mo)。本文中一个或多个图片的彩色版本可在 https://doi.org/10.1109/TCSII.2022.3160736 上找到。数字对象标识符 10.1109/TCSII.2022.3160736
1拉德布德分子生命科学研究所肿瘤免疫学系,拉德布德大学医学中心,荷兰6525 GA Nijmegen; asima.abidi@radboudumc.nl(a.a.); mark.gorris@radboudumc.nl(M.A.J.G.); evan.brennan@student.ru.nl(E.B.); gerty.schreibelt@radboudumc.nl(G.S.)2MáXima公主小儿肿瘤学中心,荷兰3584 CS UTRECHT; m.c.j.jongmans-3@umcutrecht.nl(M.C.J.J.); d.d.weijers@prinsesmaximacentrum.nl(D.D.W.); r.kuiper@prinsesmaximacentrum.nl(R.P.K.)3遗传学系,大学医学中心乌得勒支,3584 CX UTRECHT,荷兰4人类遗传学系,拉德布德大学医学中心,6525 GA Nijmegen,荷兰; Richarda.devoer@radboudumc.nl(R.M.D.V.); nicoline.hoogerbrugge@radboudumc.nl(N.H.)5医学肿瘤学系,拉德布德大学医学中心,6525 GA Nijmegen,荷兰 *通信:jolanda.devries@radboudumc.nl;电话。: +31-24-3655750