线粒体是具有必需代谢活动的动态细胞器,被视为具有生物合成、生物能量学和信号传导功能的信号枢纽,可协调关键的生物途径。然而,线粒体可以影响与肿瘤发生相关的所有过程,从恶性转化为转移性播散。在这篇综述中,我们描述了线粒体代谢状态的改变如何导致典型恶性特征的获得,并讨论了最新的发现和许多未解答的问题。我们还强调,在癌细胞代谢的背景下扩大我们对线粒体调控和功能机制的理解可能是生物医学研究中的一项重要任务,从而为靶向线粒体治疗癌症提供了可能性。© 2020 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可的开放获取文章。(http://creativecommons.org/licenses/by-nc-nd/4.0/)
线粒体参与各种细胞事件。人类线粒体基因组编码13种蛋白质,2个rRNA和22个TRNA,这是广泛接受的。源自人核基因组的基因变异无法完全解释线粒体疾病。高通量测序的出现,再加上新型生物信息学分析,解释了线粒体衍生的转录本的复杂性。最近,发现人线粒体基因组和核基因组的圆形RNA(CIRCRNA)位于线粒体。研究了核编码ciRCRNA到线粒体和线粒体在哺乳动物中编码circrnas的作用和分子机制的研究。这些circrnas与多种疾病,尤其是癌症有关。在这里,我们通过审查其鉴定,表达模式,调节作用和功能机制来讨论线粒体划分的circrnas的新兴领域。线粒体置换的ciRCRNA在细胞生理和病理学中具有调节作用。我们还强调了未来的观点和研究线粒体分离的circrnas及其潜在的生物医学应用方面的挑战。
摘要:近年来,人们对肿瘤细胞线粒体作为药物靶点的兴趣重新燃起。这种关注部分归因于新发表的论文,这些论文记录了实体肿瘤的异质性特征,包括缺氧区和低氧区,这些区域会培养具有不同代谢特征的细胞群。这些细胞群包括肿瘤起始细胞或癌症干细胞,它们具有很强的适应氧气供应减少的能力,可在糖酵解和氧化磷酸化之间快速切换作为能量和代谢物的来源。此外,该细胞亚群表现出很高的化学和放射抗性以及很高的肿瘤再增殖能力。有趣的是,研究表明,抑制肿瘤细胞中的线粒体功能会影响糖酵解途径、细胞生物能和细胞活力。因此,抑制线粒体可能是根除癌症干细胞的可行策略。在此背景下,过去十年的药物化学研究已经合成并表征了能够将新型或现有药效团运送到线粒体肿瘤细胞的“载体”,其机制利用了载体的物理化学性质和线粒体的固有特性。这些药效团的化学性质各异,有些是从植物中分离出来的,有些则是在实验室中合成的。其中一些分子具有活性,而有些则是前体药物,可单独评估或与针对线粒体的药物相关。最后,研究人员最近描述了一些安全性和有效性已得到充分证明的药物,它们可能通过非典型机制在肿瘤细胞中发挥线粒体特异性抑制作用。通过将这些分子与线粒体载体分子连接起来,可以提高这些分子的有效性。这些有前景的药物应该在临床研究中单独进行评估,并与经典化疗药物联合使用。
线粒体形态的研究更多地是在培养的细胞而不是天然细胞中进行的。The issue with this disparity has been highlighted by a study of vascular smooth muscle cells, of which those that were cultured cells appeared to offer more mitochondrial morphological diversity than in those that are native, which rather have singular spherical or rod-like mitochondria (with native cells in most tissues being found to have these similar, punctuate mitochondria), making it unlikely that observing ovoid shapes is due to氧化应激或成像难度。进一步的证据表明,遵守线粒体形状的传统观念包括未发现天然细胞的线粒体是电耦合的 - 它们的膜电位变化是独立的,而不是作为公共变化的一部分,这将在形成连续网络的细胞器中观察到。图1介绍了这项研究中线粒体和培养细胞中线粒体的图像。
源自蓝细菌的微生物毒素β -N-甲基氨基氨基 - L-丙氨酸(BMAA)靶向神经元线粒体,从而激活神经元的先天免疫,从而激活神经元素。尽管已知会调节脑部炎症,但异常小胶质功能在神经退行性过程中的精确作用仍然难以捉摸。为了确定神经元是否信号小胶质细胞,我们用BMAA处理了原发性皮质神经元,然后将其与N9小胶质细胞系共同培养。我们的观察结果表明,小胶质细胞激活需要初始神经元启动。与皮质神经元中观察到的相反,BMAA无法激活N9细胞中的炎症途径。我们观察到小胶质细胞激活取决于BMAA处理的神经元信号的线粒体功能障碍。在这种情况下,由于N9细胞中的线粒体损伤,NLRP3促炎途径被激活。这些结果表明,在BMAA存在下的小胶质细胞激活取决于神经元信号传导。这项研究提供了证据,表明神经元可能触发小胶质细胞激活和随后的神经炎症。此外,我们至少在初始阶段至少在改善神经元的先天免疫激活中可能具有保护作用。这项工作通过将主要作用分配给神经元来挑战当前对神经炎症的理解。
引言线粒体通过氧化磷酸化(OXPHOS)产生ATP,但它们也参与了包括氧化还原信号(1),代谢物信号传导(2),钙信号传导(3)的多种生物学功能,以及从细胞中逃脱并在远处组织(4,4,5)上产生的应力信号。mito-Conchondria在合成与组蛋白和DNA表观遗传学修饰的合成生物液中也起着重要作用(6)。最后,线粒体对于产生脂质,蛋白质和核苷酸生物合成所需的底物至关重要,这对于快速增殖的细胞中生物量的生物量是必需的。在代谢活性组织(如心脏)的有丝分裂细胞中,ATP产生被认为是线粒体的主要功能。然而,线粒体的其他功能在成熟心脏中继续促进心肌细胞功能和表型的程度尚未完全理解。
我的实验室对了解线粒体如何控制 ATP 生成以外的生理和病理感兴趣。几十年来,线粒体主要被视为生物合成和生物能量细胞器,分别产生代谢物以产生大分子和 ATP。我们的工作揭示了线粒体具有第三种不同的作用,即线粒体可以产生信号来控制生理和疾病。我们的工作揭示了线粒体可以释放活性氧 (ROS) 和代谢物 L-2-羟基戊二酸 (L-2HG) 来控制缺氧反应、细胞分化和免疫反应。这种线粒体信号失调会引发病理。我将介绍我们的最新发现,即线粒体作为信号细胞器如何控制适应性和先天免疫。
摘要 结直肠癌 (CRC) 是全球第三大最常见的癌症,也是第二大致命癌症类型。在晚期诊断中,CRC 可以抵抗与癌症干细胞 (CSC) 密切相关的治疗方案。CSC 是肿瘤细胞的一个亚群,负责肿瘤的起始和维持、转移和对常规治疗的耐药性。在这种情况下,结直肠癌干细胞 (CCSC) 被认为是治疗失败和耐药性的重要关键。反过来,线粒体是一种参与癌症许多机制的细胞器,包括由于线粒体代谢、细胞凋亡、动力学和线粒体自噬的改变而导致的细胞毒性药物化学耐药性。因此,了解 CCSC 中线粒体在 CRC 耐药性方面的作用至关重要。研究表明,增强抗凋亡蛋白表达、线粒体自噬率和对氧化磷酸化的依赖是 CCSC 为避免药物损伤而开发的主要策略。因此,必须探索新的针对线粒体的药物方法,通过消融 CCSC 来减轻 CRC 化学耐药性。
摘要神经退行性疾病(NDDS),例如阿尔茨海默氏病(AD)和帕金森氏病(PD),是一种以促进性变性为特征的异质性疾病。ndds威胁着全球数百万人的生命,遗憾的是无法治愈。线粒体的功能障碍是NDD的发病机理的基础。线粒体的功能障碍会导致能量耗竭,氧化应激,钙过载,胱天蛋白酶激活,这主要主导了NDD的神经元死亡。因此,线粒体是干预NDD的首选目标。到目前为止,已经开发出了各种靶向线粒体的药物,并且令人愉悦 - 其中一些表现出了令人鼓舞的结果,尽管仍然存在一些障碍,例如焦油特定的特定能力,可以阻碍药物开发。在当前的综述中,我们将精心解决1)设计靶向药物的线粒体的策略,2)各个线粒体靶向药物的救援机制,3)如何评估治疗效应。希望这篇评论将提供全面的知识,以了解如何开发更有效的NDD治疗药物。