1. 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 83
线粒体是细胞代谢的控制中心和细胞死亡的执行者。线粒体还具有线粒体DNA的遗传装置。mtDNA具有与核DNA不同的独特特征,并且是取证的标志,非常重要,在这种情况下,在生物学证据中存在很少的情况下,它经常被使用。mtDNA由于暴露于活性氧而导致的突变率很高,因此为了补偿损坏的线粒体,线粒体会经历生物发生。关键字:线粒体,生物发生,基因组。pendahuluan
数据表明 PR-364 增强了线粒体的功能,线粒体是细胞内产生能量以驱动生化反应的微小结构。健康的线粒体是保护和修复心脏和其他肌肉过程的关键驱动因素。PR-364 通过多种有益方式改变了线粒体:
抽象的线粒体选择性荧光探针(例如mitotracker)通常用于各种植物中的线粒体成像。尽管据报道某些探针会诱导动物细胞中线粒体功能障碍,但对植物细胞的影响仍有待确定。在本研究中,我们使用定量方法来分析线粒体运动,速度频率和速度角变化,基于拟南芥中叶叶叶质细胞中线粒体的轨迹分析,表达了线粒体 - 位于线粒体 - 平钙化的荧光蛋白。使用定量方法,我们评估了Mitotracker Red(FM和CMXROS)是否诱导A. thaliana的线粒体功能障碍。尽管荧光探针均染色良好,但CMXros探针而非FM探测器对低浓度(10 nm)的线粒体运动产生了严重影响,表明thaliana的线粒体诱导的线粒体功能障碍。这些结果表明,我们基于线粒体运动的定量方法可用于确定植物中线粒体选择性荧光探针的适当浓度。
可逆的线粒体损伤,而线粒体裂变会在不可逆地损坏的线粒体积累时发生。5个拉长线粒体是融合活性的结果,而裂缝和小球线粒体是通过裂变产生的。mItofusin 1和2(MFN1-2)和视萎萎缩1蛋白(OPA1)代表线粒体融合的主要编排,从而允许外部(OMM)和内部线形膜(IMM)之间融合。5,7与动力蛋白相关的蛋白1(DRP1),线粒体裂变1蛋白(FIS1),线粒体干蛋白1(MDV1)和线粒体裂变因子(MFF)而不是线粒体裂变。可以通过线粒体去除损坏和老化的线粒体,包括源自线粒体裂变的线粒体,并由生物发生取代新鲜形成的线粒体。7
在 1 型和 2 型糖尿病中,胰腺 β 细胞的存活和功能受损。糖尿病的其他病因包括胰岛素感应肝脏、肌肉和脂肪组织以及免疫细胞的功能障碍。这些不同组织代谢健康的一个重要决定因素是线粒体的功能和结构。本综述重点介绍线粒体在糖尿病发病机制中的作用,特别强调胰腺 β 细胞。这些动态细胞器对于 β 细胞的存活、功能、复制、胰岛素生成和控制胰岛素释放至关重要。因此,在糖尿病环境中线粒体严重缺陷也就不足为奇了。线粒体功能障碍在因果研究中难以评估,促使我们收集和仔细研究线粒体功能障碍是糖尿病的原因还是后果的证据。了解糖尿病线粒体功能障碍的确切分子机制,并确定恢复线粒体稳态和增强 β 细胞功能的治疗策略,是活跃且不断扩展的研究领域。总之,本综述探讨了线粒体在糖尿病中的多维作用,重点关注胰腺 β 细胞,并强调线粒体代谢、生物能量学、钙、动力学和线粒体自噬在糖尿病病理生理学中的重要性。我们描述了糖尿病相关的糖/脂毒性、氧化和炎症应激对 β 细胞线粒体的影响,以及线粒体在这些应激模式的病理结果中所起的作用。通过研究这些方面,我们提供了最新的见解,并强调了需要进一步研究的领域,以便更深入地从分子角度了解线粒体在 β 细胞和糖尿病中的作用。
摘要:线粒体是必不可少的细胞细胞器,控制了对细胞存活和细胞死亡至关重要的多个信号通路。越来越多的证据表明,线粒体代谢和功能在肿瘤发生和癌症的进展中是必不可少的,使线粒体和线粒体的功能是抗癌治疗剂的合理靶标。在这篇综述中,我们总结了线粒体及其功能的选择性靶向对抗癌症的主要策略,包括靶向线粒体代谢,电子传输链和三羧酸周期,线粒体氧化还原信号通路和ROS稳态。我们强调,将抗癌药物递送到线粒体中具有巨大的潜力,这是未来癌症治疗策略的巨大潜力,具有可能克服耐药性的巨大优势。Mitocans被线粒体靶向的维生素E琥珀酸酯和他莫昔芬(Mitotam)典型地靶向,选择性地靶向癌细胞线粒体,并有效地通过干扰线粒体功能来杀死多种类型的癌细胞,目前正在接受Mitotam进行临床试验。
“通过我们的研究,我们了解到父母饮酒会导致后代的线粒体问题,” VMBS兽医生理学和药理学系教授Golding说。“如果您将线粒体视为电池,父母饮酒会导致'电池'的电压异常低。由于线粒体无法正常工作,因此会引起炎症,并且炎症过多会使您容易受到癌症的发展。”
线粒体都存在于除成熟的红细胞外的所有哺乳动物细胞中。线粒体由几种用于葡萄糖,脂肪酸,氨基酸和生物能途径的代谢途径,用于ATP合成,膜电位和活性氧的产生。在肝脏中,肝线粒体在肝脂肪变性中起关键作用,因为线粒体代谢产生乙酰辅酶A乙酰辅酶A,这是合成脂质和胆固醇的基础。线粒体内膜不可渗透代谢物,还原等效物以及磷酸盐和硫酸盐等小分子。因此,线粒体穿梭和载体起着这些代谢产物和分子在整个膜上的流入和外排的途径。这些班车和线粒体酶的信号调节在协调线粒体代谢以适应肝脏代谢应激中代谢途径的胞质部分方面起着关键作用。有趣的是,线粒体蛋白SH3结合蛋白5(SAB/ SH3BP5)和C-JUN N末端激酶(JNK)的相互作用在JNK持续激活JNK和磷酸化 - JNK(P-JNK)介导的Lipogenitication的激活途径中的持续激活中是关键作用。SAB的敲除或敲除可以防止或逆转肝脏脂肪变性,炎症和纤维化,以及改善的代谢不耐受和能量消耗。此外,阻塞SAB肽可防止棕榈酸诱导的P-JNK与SAB的相互作用并抑制线粒体生物能力,这意味着P-JNK对线粒体代谢的影响。本综述的重点是在代谢胁迫条件下线粒体代谢产物的流动以及线粒体和线粒体应激信号在肝脂肪变性中的贡献。
1.1。生物分子,碳水化合物,脂质,蛋白质,核酸的结构和简要描述。1.2。细胞:质膜和细胞质的物理化学性质。1.3。Ultrastructure of plant cell with a brief description and functions of the following organelles: Endoplasmic reticulum, Plastids, Mitochondria, Ribosomes, Dictyosomes, Vacuole, Microbodies (Glyoxysomes and Peroxisomes) 1.4 Nucleus: Nuclear membrane, nucleolus, ultrastructure and morphology of chromosomes, karyotype analysis; 1.5。在体细胞和胚胎细胞中繁殖;有丝分裂和减数分裂;细胞周期; 1.6。染色体畸变;染色体数量,非整倍性和多倍体的变化;染色体,缺失,重复,反转和易位的结构变化,特殊类型的染色体,染色体系统(染色体生成和apomixis)。2。遗传学和进化:
