未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2024年5月13日。; https://doi.org/10.1101/2023.05.22.541833 doi:Biorxiv Preprint
抽象的杂种形成了各种真核生物的进化枝,包括多细胞藻类,鱼类和植物性的致病性卵菌,例如马铃薯枯萎病植物植物和人类肠道原生动物原生动物胚泡。在大多数真核生物中,糖酵解是一种严格的胞质代谢途径,将葡萄糖转化为丙酮酸,导致NADH和ATP的产生(三磷酸腺苷)。相比之下,斯流媒体具有分支的糖酵解,其中回报阶段的酶位于细胞质和线粒体基质中。在这里,我们在胚泡中确定了一个可以运输糖酵解中间体的线粒体载体,例如二羟基乙酮磷酸二羟基苯甲酸酯和3-磷酸甘油醛,穿越线粒体内膜,与细胞质和线粒体分支相关。与系统发育相关的人线粒体氧甲酸酯载体(SLC25A11)和二烷基化合物载体(SLC25A10)进行了比较分析,表明糖酵解中间载体失去了其经过跨性质底物疟疾和氧气的能力。胚泡缺少生成线粒体ATP所需的几个关键成分,例如复合物III和IV,ATP合酶以及ADP/ATP载体。线粒体矩阵中糖酵解的回报阶段的存在会产生ATP,该ATP可以为诸如型蛋白质i使用的蛋白质促进蛋白质和蛋白质和分解蛋白质的物质,从而为诸如大分子核酸菌合物以及NADH等动力提供动力。鉴于其在碳和能源代谢中的独特底物特异性和中心作用,此处鉴定出的糖酵解中间体的载体代表了针对斯特雷默培养病原体的特定药物和农药靶标,这是非常重要的。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2024 年 5 月 13 日发布。;https://doi.org/10.1101/2024.05.13.593977 doi:bioRxiv preprint
MT-RNR1基因位于线粒体DNA(mtDNA)中。线粒体DNA与位于核中的DNA分开。它是唯一的,因为单个细胞中有多个线粒体,因此有多个mtDNA副本。MT-RNR1变体存在于所提供的样品中测试的mtDNA中的100%。因为该变体存在于所有测试的mtDNA中,因此被认为是同质的。当变体仅存在于测试的mtDNA的一部分中时,它被认为是异质的。样品的部分存在mtDNA变体中存在的一部分在单个个体中的组织类型(例如血液,肌肉或皮肤)之间的不同。在其他组织中存在这种变体的比例是未知的,因为颊是唯一测试的组织。在细胞表达线粒体呼吸链的生化异常之前,具有序列变体的mtDNA比例必须超过临界阈值水平(PMID:9239539)。
1 Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia, 2 Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States, 3 Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia, 4 School of Biosciences, Faculty of Health and Medical Sciences, Taylor ' s University Lakeside Campus, Subang Jaya, Selangor, Malaysia, 5 Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia, 6 School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih,雪兰莪,马来西亚
亚洲,欧洲和近东群。将获得的结果与使用大型常染色体SNP产生的结果进行了比较。我们观察到居住在该国南部和中部地区的人群之间存在微小但重要的区别。此外,在两个柏柏尔人群(Nouvelle Zraoua和Tamezret)和R'Baya的半游牧阿拉伯群体中检测到了遗传隔离的强大特征。我们的调查表明,调查的突尼斯南部人口的遗传结构保留了发生在7-17世纪之间的历史事件的签名,尤其是萨哈拉式奴隶贸易和阿拉伯征服期间南部偏远地区的柏柏尔人的移民。
mtDNA中的突变速率比核DNA高约10倍,这可能是由于次要修复系统,暴露于氧化磷酸化产生的无氧自由基以及缺乏保护性组蛋白所产生的无氧自由基。NT 45-287和NT 16105-16348之间的区域被认为是高变量的。线粒体DNA没有内含子,几乎没有基因间区域。因此,大多数序列更改将影响编码序列。mtDNA的转录是多物质的,这意味着将两个(“重”和“轻”)DNA链编码的所有基因转录为两个大型前体RNA链。线粒体基因组中任何地方的缺失也可能影响其他基因的转录或翻译,即使它们的序列完好无损。结果,各种尺寸的缺失可能导致相似的表型。遗传的mtDNA异常是母体的,因为所有线粒体都来自卵子。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月3日。; https://doi.org/10.1101/2024.04.04.04.04.04.04.04.04.04.04.02.587827 doi:biorxiv Preprint
Monforte de Lemos,3-5。pabellón11。Planta 0,28029西班牙马德里; 19 Inserm umrs1166,ICAN - 索邦大学心脏代谢与营养学院,心脏病学研究所,皮蒂·萨尔佩特里尔医院,91 Boulevard del'Hôpital,75013 BOULEVARD deL'Hôpital,75013 Paris,法国巴黎; 20 MASTRICHT大学心血管研究学院生理学系,MASTRICHT大学,Minderbroedersberg 4-66211 LK Maastricht,荷兰; 21人类遗传学研究所,遗传流行病学研究所,WWUMünster,Albert-Schweitzer-Campus 1,D3,Domagkstraße3,48149Münster,德国; 22遗传流行病学和统计遗传学的心血管研究学院,马斯特里赫特大学,Universiteitssingel 50,6229 Er Maastricht,荷兰; 23德国沃兹堡大学药理学与毒理学研究所,沃尔兹堡大学9,97078Würzburg,德国; 24形态学和电子显微镜系,分子神经生物学中心,汉堡 - 埃潘多夫大学医学中心,Martinistraße52,20246年,德国汉堡;和25 Leibniz-InstitutFürAnalytischeWissenschaften-ISAS-E.V。
线粒体都存在于除成熟的红细胞外的所有哺乳动物细胞中。线粒体由几种用于葡萄糖,脂肪酸,氨基酸和生物能途径的代谢途径,用于ATP合成,膜电位和活性氧的产生。在肝脏中,肝线粒体在肝脂肪变性中起关键作用,因为线粒体代谢产生乙酰辅酶A乙酰辅酶A,这是合成脂质和胆固醇的基础。线粒体内膜不可渗透代谢物,还原等效物以及磷酸盐和硫酸盐等小分子。因此,线粒体穿梭和载体起着这些代谢产物和分子在整个膜上的流入和外排的途径。这些班车和线粒体酶的信号调节在协调线粒体代谢以适应肝脏代谢应激中代谢途径的胞质部分方面起着关键作用。有趣的是,线粒体蛋白SH3结合蛋白5(SAB/ SH3BP5)和C-JUN N末端激酶(JNK)的相互作用在JNK持续激活JNK和磷酸化 - JNK(P-JNK)介导的Lipogenitication的激活途径中的持续激活中是关键作用。SAB的敲除或敲除可以防止或逆转肝脏脂肪变性,炎症和纤维化,以及改善的代谢不耐受和能量消耗。此外,阻塞SAB肽可防止棕榈酸诱导的P-JNK与SAB的相互作用并抑制线粒体生物能力,这意味着P-JNK对线粒体代谢的影响。本综述的重点是在代谢胁迫条件下线粒体代谢产物的流动以及线粒体和线粒体应激信号在肝脂肪变性中的贡献。