路径积分量子蒙特卡洛(PIMC)是一种通过使用马尔可夫链蒙特卡洛(Monte Carlo)从经典的吉布斯分布中抽样的量子量子自旋系统的热平衡性能的方法。PIMC方法已被广泛用于研究材料物理和模拟量子退火,但是这些成功的应用很少伴随着正式的证据,即PIMC依据的马尔可夫链迅速汇聚到所需的平衡分布。在这项工作中,我们分析了1D stoquastic hamiltonians的PIMC的混合时间,包括远程代数衰减相互作用以及无序的XY旋转链,以及与最近的静脉相互作用。通过将收敛时间与平衡分布联系起来,我们严格地证明使用PIMC在近似温度下对这些模型的可观察到的分区函数和期望为近相数,这些模型与Qubits的数量最大程度地对数扩展。混合时间分析基于应用于单位大都会马尔可夫链的规范路径方法,用于与与量子汉密尔顿量子相互作用相关的2D经典自旋模量的吉布斯分布。由于系统具有强烈的非偶然耦合,随着系统大小而生长,因此它不会属于已知2D经典自旋模型迅速混合的已知情况。
摘要。如果未解决的物理学的模型参数化(例如上海混合过程的种类)将在对气候重要的时间和空间范围内保持范围很大,则必须强烈基于物理。的观察,理论和海洋垂直混合模型。确定了两种不同的机制:在各种表面强迫条件下(稳定,不稳定和风驱动),在表面附近的边界层中混合海洋混合,以及由于内部波,剪切不稳定性和双重扩散而导致海洋内部混合(由不同的热和盐分子扩散速率引起)。通常应用于上大洋的混合方案不包含一些潜在的边界层物理。因此,开发了海洋边界层混合的新参数化,以适应某些物理学。它包括一个用于确定边界层深度h的方案,其中对散装理查森数字的垂直剪切的湍流有参数为参数。给出了整个边界层中扩散性和非局部传输的表达式。扩散率是与表面层中湍流的模拟理论一致的,并且受其及其垂直梯度均与H处的内部值相匹配的条件。然后对此非局部“ k剖面参数化”(kpp)进行验证,并将其与替代方案(包括其大气相对)进行比较。它最重要的功能是
我们介绍了在石墨烯量子点 (GQD) 中通过强双频圆形激光场得出的高阶波混频/谐波产生 (HWM/HHG) 与多体相互作用过程的数值研究结果。展示了这种激光场的相对相位对 GQD 中产生的高阶谐波光谱的影响。这可能允许控制产生的谐波的极化。GQD 由最近邻紧束缚 (TB) 模型描述。在扩展的 Hubbard 近似中考虑多粒子相互作用。我们使用我们已经应用的方法求解带电载流子的现场表示中的量子动力学方程,并获得了 GQD 中高阶波混频/谐波产生过程的通用公式。由于光波点系统的对称性匹配,HWM/HHG 产量的显着提高发生在具有特定群对称性的 GQD 中。对所得结果的分析证实了在双频圆形激光场的某些相位下,具有锯齿状边缘的三角形和六边形GQDs中的HWM/HHG具有足够的效率。
近年来,各种出版物讨论了与微通道壁上尖锐的结构结合使用超声检查以实现快速混合的可能性。用超声操作通道时,锋利的边缘会振动并产生局部声流现象,从而导致流体的混合大大增强。使用低kHz范围内的声频率,波长远大于通道宽度,因此可以假定通道段的统一致动,包括锋利的边缘。在先前的工作中,我们在Comsol多物理学的声学模块中采用了新的声学流界面,以模拟两种相同的流体与不同物种浓度的混合,并在含有锋利的锋利,均匀间隔,均匀间隔,均匀的三角形边缘的2D或3D段中的不同物种浓度。我们的建模管道结合了压力和热雾声的声学流界面与背景流和稀释物种界面的运输以模拟两个不同的物种浓度的额外的层流界面。计算网格需要在锋利的边缘上高度完善,以解决粘性边界层。使用四个研究步骤解决模型,首先解决频域中的声学,然后计算声流流的固定解,层流背景流以及浓度场。
攻击性语言识别是近年来受到越来越多关注的研究领域。特别是随着社交媒体平台的兴起,识别混合有代码的社交媒体文本中的攻击性语言至关重要。在社交媒体文本中识别攻击性语言是一项具有挑战性的任务。此外,在英语、希腊语或西班牙语等语言中已经做了大量攻击性语言识别工作(Zampieri 等人,2019 年;Pitenis 等人,2020 年;Ranasinghe 和 Zampieri,2020 年),但对于达罗毗荼语混合代码文本的攻击性语言识别工作却很少。达罗毗荼语(泰米尔语-英语、马拉雅拉姆语-英语和卡纳达语-英语)攻击性语言识别共享任务改变了这一状况。这项共享任务的目标是识别德拉威语混合代码文本中的攻击性语言。混合代码文本是从社交媒体平台收集的。这是一项评论或帖子级别的多语言分类任务,给出混合代码的泰米尔语-英语、马拉雅拉姆语-英语的评论或帖子
融化回收多层包装(MLP)废物由于具有挑战性的分离程序而难以进行。但是,将技术与兼容器的混合技术可以简化MLP废物融化回收利用。pp-g-GMA是聚烯烃和PET混合物中的常见相容剂。pp-g-gma兼容剂是通过使用苯乙烯作为共同体的175 rpm,50 rpm和10分钟的内部混合器合成的。滴定是一种检查添加BPO引发剂对GMA移植的三个不同序列的效果的方法。使用双螺钉挤出机和模压以制造拉伸测试样品的注射器,将每个序列的PP-GMA样品与MLP废物复合。FTIR分析表明,GMA和苯乙烯单体已接枝到PP聚合物主链上,通过改变混合序列,GMA接枝度。序列3同时将引发剂,GMA和苯乙烯引入PP熔体,得出了PP-GMA,最显着的GMA接枝度为5.11%。将从序列3产生的PP-GMA中添加到MLP熔体中,增强了MLP/PP-G-GMA化合物断裂时的拉伸强度和伸长率的最高增加。
关键矿物质和金属的主要沉积物(例如铜,钴,铅和锌)通常发生在碳酸盐沉积物内的断层,断裂或其他高孔隙区域的直接附近。这种矿化可以在这些碳酸盐托管的渗透性网络中混合到现有的液体中,使断层,断裂或高孔隙率区域的形成日期。所得的液体混合以及与周围碳酸盐岩的相关化学交换在系统内部产生不平衡,从而诱导矿化。流体岩石相互作用实验表明,随着流体中的CA含量的增加,随着它溶解在周围的碳酸盐中,它可以作为Zn-PB矿物沉淀的催化剂[1],并在与H 2 s含H 2 s碳含量时产生与Spherite(Zns)降水有关的缓冲效果。这些发现与研究H 2 S-地形系统中的合并腐蚀和尺度的实验中的爆发岩沉淀之间的联系是一致的[2]。数值建模显示出对碳酸盐中的baryte形成的相似作用[3]。
本文由LSU学术存储库的Craft and Hawkins Engifeering提供给您,并免费提供开放访问权限。已被LSU学术存储库的授权管理人纳入教师出版物。有关更多信息,请联系ir@lsu.edu。
摘要:随着可再生能源渗透率的提高,混合可再生能源系统与抽水蓄能相结合变得越来越受欢迎。这种配置在通常不与大陆电网相连的偏远地区更为繁荣,这些地区的能源独立挑战加剧。本研究侧重于从建立可再生能源最佳组合的角度设计此类系统,利用可再生能源的互补性和协同作用,结合抽水蓄能的多功能性。然而,这种设计具有相当大的复杂性,一方面是要满足多个目标和约束,另一方面是内在的不确定性,这些不确定性涵盖了所有底层过程,即外部和内部。在这方面,我们利用希腊爱琴海锡夫诺斯岛提出的混合可再生能源系统布局,在确定性和最终随机性设置中开发和评估综合模拟优化方案,揭示不确定性保护下的设计问题。具体来说,我们考虑了三个主要的不确定因素,即风速(自然过程)、能源需求(人为过程)和风能到电能的转换(内部过程,以概率功率曲线表示)。我们还强调了有关系统关键设计参数(水库规模和太阳能发电量)的决策程序,这是通过彻底解释不确定性感知优化结果来实现的。最后,由于拟议的抽水蓄能项目使用海洋作为下水库,因此需要解决额外的技术挑战。