我们研究了杂质在混沌介质中移动的随机幺正电路模型。介质和杂质之间的信息交换通过改变杂质的速度vd (相对于信息在介质中传播的速度v B )来控制。在超音速以上,vd > v B ,信息在进入介质后无法流回杂质,由此产生的动力学是马尔可夫的。在超音速以下,vd < v B ,杂质和介质的动力学是非马尔可夫的,信息能够流回杂质。我们表明,这两个状态由连续相变分隔,其指数与介质中算子的扩散扩展直接相关。通过监测非时间序相关器(OTOC),在中间时间替换杂质的场景中证明了这一点。在马尔可夫阶段,来自介质的信息无法转移到被替换的杂质上,表现为没有显著的算子发展。相反,在非马尔可夫阶段,我们观察到算子获得了对新引入的杂质的支持。我们还使用相干信息来表征动态,并提供两个解码器,可以有效地探测马尔可夫和非马尔可夫信息流之间的转换。我们的工作表明,马尔可夫和非马尔可夫动态可以通过相变来分离,我们提出了一种观察这种转变的有效协议。
Kenji Sato,Hirokazu Kato,Takafumi Fukushima,“ N700S的牵引系统的出色技术特征Shinkansen New Generation New Generation Strandinal Stranditiaralizatization High Speed Train”,IEEJ的工业应用杂志,第4卷第4页,第402-4102-410,2021.3页。
移动遗传因素(MGE)的交换促进了功能性状的传播,包括细菌群落内的抗菌抗性。目前缺乏在复杂的微生物群落中绘制MGE和识别其细菌宿主的工具,从而限制了我们对这一过程的理解。在这里,我们将单分子DNA荧光原位杂交(FISH)与多重核糖体RNA-fish相结合,以同时可视化MGE和细菌分类单元。我们在空间映射的噬菌体和抗菌耐药性(AMR)质粒中鉴定了其在人口腔生物膜中的宿主分类群。这揭示了AMR质粒和预言的独特簇,与宿主细菌的密集区域一致。我们的数据表明,细菌分类群中的空间异质性导致社区内部的MGE分布,MGE簇是由水平基因转移热点或MGE携带菌株的扩展产生的。我们的方法可以帮助推进生物膜中AMR和噬菌体生态的研究。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年8月21日。 https://doi.org/10.1101/2024.08.21.608784 doi:biorxiv preprint
。CC-BY-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 8 月 21 日发布。;https://doi.org/10.1101/2024.08.21.608784 doi:bioRxiv 预印本
美国的国防官员指出,“总质量管理(TQM)利用定量(技术)方法和人力资源(行为)实践来改善材料和服务投入,间和内部组织过程,并加强满足客户需求的过程”(Forker,1997; Senarath等,199; Senarath等,2020)。一般而言,TQM实践是一系列技术,这些技术强调不断进展,持续监视结果,满足客户的期望,解决问题的方法解决方法,竞争性基准测试,降低工作时间表,战略思维和与供应商的长期关系(Bagodi等,2020; Feigenbaum,1991年)。总质量管理(TQM)的主要目标是提高效率并优化制造组织中使用的程序(Zatzick等,2012)。此外,过去几十年来,总体方法和供应链物流的质量保证和控制被认为是有效的有效方法。这些方法的实践在通过回收成本,提高交付效率并提供优质商品来发展运营效率方面起着至关重要的作用(Sila等,2006)。
iot.asus.com请在订购前验证规格。本文档仅用于参考目的。所有产品规范均需更改,恕不另行通知。未经出版商事先事先书面许可,本出版物的任何一部分都不得以任何形式或任何形式,电子,影印,记录或其他方式复制。©Asustek Computer Inc.保留所有权利。
通过各种环境传播抗生素耐药性(AR),而AR热点在公共卫生危机中的作用正在越来越受到关注。水生生物膜被推测,由于它们收集了不同的微生物和促进水平基因转移(HGT),因此在AR扩散中起着重要作用。然而,很少有研究表征自然生物膜中存在的AR基因(抵抗)。这项研究的目的是使用小脑子长阅读测序分析叶丁顿(Epilethic Bioflms)中的微生物组,抵抗组和移动遗传元素(MGE)(N = 56)(n = 56),从俄亥俄州的多用途水域中,以阐明临床相关的Periphyton在临床上相关的角色。周围微生物组的主要成员包括黄杆菌和气管。总体而言,围叶顿微生物群落随季节和位置发生了变化。特别是,在夏季,生物膜中的卟啉菌和蓝细菌的物种更为丰富。潜在的致病性细菌,包括家族肠杆菌科,病原体koreensis和人类病原体志贺氏菌浮华,在大城市,哥伦布斯,OH,OH,比上游的地点更丰富。多种类别的甲基抗抗抗原抗性体带有多种AR基因,但临床相关性很小。大肠杆菌,大肠杆菌和穆氏菌是AR基因(ARGS)和MGE的常见宿主。假单胞菌和蓝细菌经常是MGE宿主,但不是AR基因,表明这些分类单元在HGT内和周围生物膜周围的潜在重要作用。虽然这项研究的测序深度相对较浅,但这些发现突出了在生物膜中ARG传播的迁移率潜力。
欧洲,日本,德国和美国品牌主导了欧洲和北美的汽车市场。进入这些市场,Geely意识到,出口Geely品牌没有奏效。geely意识到,这些市场的成功需要在这些市场中获得表现不佳的公认品牌。进入是通过获取完成的,并将竞争最小化。现有品牌已经建立了供应商和客户。表现不佳的品牌需要的是注入资本和对制造设施的大量升级。为了保留这些品牌的文化,它们是ZHG内部单独的部门,并保留了单独的管理结构。geely还意识到,它需要在北美,欧洲和中国为这些获得的品牌升级和建立制造设施,以避免关税和进口配额。
路径计划是移动机器人应用程序的关键要素,引起了学者的极大兴趣。本文提出了一种使用增强的萤火虫算法(EFA)的路径规划方法,这是一种新的元元素技术。增强的萤火虫算法(FA)通过在α参数中纳入线性还原而与普通FA有所不同。这种修改成功解析了正常FA的约束。该研究涉及在三个单独的地图上进行实验,使用常规FA和每个地图的20种不同运行中的增强的FA。评估标准涵盖了算法从初始位置转移到最终位置而无需体验任何碰撞的能力。对路径质量的评估取决于诸如路径距离和算法收敛和发现最佳溶液的能力。结果表明,增强的FA取得了显着改善,与常规FA相比,MAP 1的最短路径最短路径的最短路径增加了10.270%,MAP 2增加了0.371%,而MAP 3则增加了0.163%。这项工作突出了增强的萤火虫算法在优化移动机器人应用程序的路径计划方面的有效性,从而提供了导航效率和避免碰撞的潜在提高。