摘要背景:通过生物化学转化从可再生生物质中获得的生物燃料和增值生物化学品已引起广泛关注,以满足全球可持续能源和环境目标。异丁醇是一种四碳醇,具有许多优点,使其成为有吸引力的化石燃料替代品。运动发酵单胞菌是一种高效的厌氧产乙醇细菌,使其成为生物精炼厂的有前途的工业平台。结果:在本研究中,研究了异丁醇对运动发酵单胞菌的影响,并构建了各种生产异丁醇的重组菌株。结果表明,运动发酵单胞菌亲本菌株能够在低于 12 g/L 的异丁醇存在下生长,而浓度高于 16 g/L 会抑制细胞生长。运动发酵单胞菌中异丁醇生产需要整合编码 2-酮异戊酸脱羧酶的异源基因,例如来自乳酸乳球菌的 kdcA。此外,在由四环素诱导启动子 Ptet 驱动的含有 kdcA 基因的重组菌株中,异丁醇产量从接近零提高到 100–150 mg/L。另外,我们确定在表达 kdcA 的重组 Z. mobilis 菌株中过表达异源 als 基因和两个参与缬氨酸代谢的天然基因( ilvC 和 ilvD )可将丙酮酸从乙醇生产转移到异丁醇生物合成。这一工程将异丁醇产量提高到 1 g/L 以上。最后,确定了含有由 Ptet 驱动的合成操纵子 als - ilvC - ilvD 和由组成型强启动子 Pgap 驱动的 kdcA 基因的重组菌株大大提高了异丁醇产量,最高滴度约为 4.0 g/L。最后,异丁醇生产受到通气的负面影响,通气较差的烧瓶中会产生更多的异丁醇。结论:这项研究表明,kdcA 与合成异源操纵子 als - ilvC - ilvD 的过度表达对于将丙酮酸从乙醇生产中转移出来以增强异丁醇的生物合成至关重要。此外,这项研究还提供了一种利用缬氨酸代谢途径在 Z. mobilis 中生产其他丙酮酸衍生生物化学物质的策略。关键词:Zymomonas mobilis、生物燃料、异丁醇、代谢工程、丙酮酸衍生生物化学物质、2-酮异戊酸脱羧酶 (Kdc)
蔗糖发酵是一个过程,涉及通过某些类型的微生物(例如酵母菌和细菌)将蔗糖转化为乙醇和二氧化碳的过程。此过程具有多种应用,从酒精饮料的生产到生物燃料和其他化学物质的工业生产。在本文中,我们将探讨蔗糖发酵背后的科学,包括所涉及的微生物,生化途径以及该过程的应用。蔗糖发酵通常由酵母和细菌等微生物进行。在蔗糖发酵中使用的最常见的酵母中是酿酒酵母和Zygosacchachomyces rouxii,而诸如Zymomonas mobilis和actobotobacter xylinum之类的细菌也能够执行此过程。酿酒酵母,也称为酿酒酵母,是一种单细胞的真菌,通常用于啤酒,葡萄酒和面包的生产中。它可以通过将蔗糖分解为葡萄糖和果糖来发酵,然后将其转化为乙醇和二氧化碳。在存在氧气的情况下,酿酒酵母也可以将乙醇转化为乙醛,该醛将进一步氧化为乙酸。Zygosaccharomyces rouxii是能够发酵的酵母。与酿酒酵母不同,它可以直接发酵蔗糖而不先将其分解成葡萄糖和果糖。Z. rouxii通常用于生产甜葡萄酒和强化葡萄酒,以及生产某些发酵食品(例如酱油和味oo)。它能够发酵Zymomonas mobilis是一种细菌,以其以非常高的速度发酵糖的能力而闻名。
摘要 空间科学是一个迷人而强大的领域,我国现在已成为其中的重要组成部分。从教育角度来看,目前已有数所大学提供某种空间科学专业培训,并且已经设立了空间工程硕士学位。在 UniSpace 计划下,17 所匈牙利大学正在合作,在四所大学提供空间科学高级培训。然而,在本科阶段,未来的工程师不太可能在基础物理之外遇到与空间科学相关的科目,或者可能仅在少数专业课程中提供。未来的专业人士应尽快接触这门学科。这就是为什么大学应该考虑提供本科水平的空间科学课程,以便更好地为有志于从事该领域职业的学生做好准备。杰尔塞切尼伊什特万大学已经采取多项措施来推广太空技术,包括 SZESAT 学生团体,学生可以在那里从事太空电信工作,Mobilis 儿童夏令营,SZESAT 每年都会在那里就该主题进行讲座,杰尔大学也是匈牙利 UniSpace 联盟的成员。
国家意识到该公司过去遇到的困难,并于 2020 年采取了行动,特别是在 2021 年确定了提出对该工业工具进行投资计划的买家。 2022年和2023年,国家向该公司提供了两笔可偿还的预付款,总额超过700万欧元,用于对生产工具进行现代化改造和提高生产能力。
摘要。Sukmawati S,Ratna R,Sipriyadi,Yunita M.2023。从印度尼西亚西南巴布亚省Sorong City的鲭鱼Bekasam的细菌表征和分子鉴定。生物多样性24:4967-4977。bekasam是传统发酵鱼产生的传统食物类型。通过发酵生长的微生物在形成产品的香气,质地和整体质量方面起着重要作用。该研究旨在确定鲭鱼(Scomberomorus sp。)的细菌的生化特征sorong City的Bekasam,并在分子水平上识别细菌。 这项研究是一项描述性研究,它描述了通过PCR(聚合酶链反应)技术从发酵鲭鱼鱼中表征细菌的结果以及分子鉴定到物种水平的结果。 然后,使用琼脂糖凝胶电泳分离方法进一步分析了DNA序列,以可视化细菌DNA谱。 鲭鱼中细菌分离株的生化表征表明,所有分离株都是阴性吲哚,八个分离株在还原硝酸盐时呈阳性。 相比之下,在还原硝酸盐时,四个分离株为阴性,然后所有分离株都具有蛋白水解活性,除了FST 3.1和FST 3.2分离株。 11个分离株在水解脂肪中是阳性的,一个分离物不能水解脂肪。sorong City的Bekasam,并在分子水平上识别细菌。这项研究是一项描述性研究,它描述了通过PCR(聚合酶链反应)技术从发酵鲭鱼鱼中表征细菌的结果以及分子鉴定到物种水平的结果。然后,使用琼脂糖凝胶电泳分离方法进一步分析了DNA序列,以可视化细菌DNA谱。鲭鱼中细菌分离株的生化表征表明,所有分离株都是阴性吲哚,八个分离株在还原硝酸盐时呈阳性。相比之下,在还原硝酸盐时,四个分离株为阴性,然后所有分离株都具有蛋白水解活性,除了FST 3.1和FST 3.2分离株。11个分离株在水解脂肪中是阳性的,一个分离物不能水解脂肪。根据16个SRNA基因序列的电泳和比对的DNA模式,已将几种类型的细菌鉴定为帕马果果仁杆菌2883 FST 1.1菌株,帕马类杆菌杆菌菌株3665 FST 2.1杆菌菌株2.1 ICA-144 FNT 2.1和蜡状芽孢杆菌菌株ATCC 14579 FNT 3.1。
“对盖伊·巴卡雷准尉在打击非法淘金行动中的死亡深感悲痛。我将我感动的思念寄给他的伙伴、他的六个孩子以及他的外国步兵第三团的战友们。我对卡莫皮的泰科美洲印第安人也有特别的想法,他们的副官盖伊·巴卡雷尔 (Guy BARCAREL) 是习惯上的酋长。我向为这项研究而动员的力量以及那些与非法淘金作斗争的人们致敬。”武装部队部长 Sébastien Lecornu 说道。
工业微生物学乙醇的产生:乙醇(乙醇)Ch 3 Ch 2 OH可以通过合成化学方法或发酵产生。乙醇(也称为生物乙醇)是通过富含葡萄糖或蔗糖培养基的发酵产生的,在没有氧气的情况下,酒精的产生最佳。最常见的乙烯类微生物是酵母菌,其中包括酿酒酵母,Schizosacachomyces spp。,Candida spp。,Kluyveromyces Lactis,Pichia spp。,Pichia spp。细菌,例如Mobilis,梭状芽孢杆菌和leuconostoc mesenteroides也参与了酒精发酵。参与这些酒精发酵的酵母主要是酿酒酵母的菌株,不能直接发酵淀粉。使用乙醇(1)用作化学饲料库存:在化学工业中,乙醇在许多化学过程中都是中间体。(2)溶剂使用:乙醇在行业中广泛用作染料,油,蜡,化妆品等的溶剂等。(3)一般公用事业:酒精被用作医院中的消毒剂,在家中进行清洁和照明,在实验室中,仅次于水作为溶剂。(4)燃料:乙醇与高达10%的汽油或汽油混合,被称为Gasohol。乙醇产生的生物化学该过程从糖通过糖甲酸糖(EMP)途径(EMP)途径开始,然后在厌氧条件下通过丙酮酸型脱羧酶在厌氧条件下转化为乙醛。乙醛进一步释放了两个分子的二氧化碳,并通过酒精脱氢酶形成乙醇。
Emmanuelle Bardin,Iwona Pranke,Alexandre Hinzpeter,Isabelle Sermet-Gaudelus>随着时间的流逝,囊性纤维化已成为细胞生物学研究与临床进度研究之间协同作用的一个例子。蛋白质疗法终于给患者带来了正常生命的希望,这绝大部分使已建立的流行病学统计数据压倒了。然而,患者无法愈合,而玛拉(Mala-Die)的流行病学演变为患者的管理带来了新的挑战。此外,约有10%的患者在没有透明溶液的情况下仍留下。新策略,研究人员,工业家,患者和卫生当局的社区仍被动员起来遵循这些新疗法的长期影响并探索新的药理学方法。