自然产品研究是一种多样化的主题,可产生和利用大量不同类型的数据。基因组,蛋白质组学,代谢组,光谱或(Bio)化学数据可能每个人都可以从不同的角度照亮相同的生化实体,并有能力相互告知。例如,基因组学可以揭示生物体中天然产物产生的遗传基础,而代谢组学可以揭示产生的代谢产物。光谱数据可以提供对这些分子结构特征的见解,并且生化数据可以阐明所涉及的酶促途径。这些综合观点可以对自然产品结构和功能进行更全面的理解。但是,可以表征自然产品科学数据格局
稳态视觉诱发电位 (SSVEP) 是一种广泛使用的脑机接口 (BCI) 范式,因其多目标能力和有限的脑电图电极要求而受到重视。传统的 SSVEP 方法经常因闪烁的光刺激而导致视觉疲劳和识别准确率下降。为了解决这些问题,我们开发了一种创新的稳态运动视觉诱发电位 (SSMVEP) 范式,该范式融合了运动和颜色刺激,专为增强现实 (AR) 眼镜设计。我们的研究旨在增强 SSMVEP 反应强度并减轻视觉疲劳。实验在受控的实验室条件下进行。使用 EEGNet 的深度学习算法和快速傅里叶变换 (FFT) 分析脑电数据,以计算分类准确率并评估反应强度。实验结果表明,双模态运动-颜色融合范式显著优于单模态SSMVEP范式和单色SSVEP范式,在中等亮度(M)和C=0.6的面积比下,准确率最高可达83.81%±6.52%。客观测量和主观报告均证实了双模态运动-颜色融合范式的信噪比(SNR)有所提高,视觉疲劳有所减轻。研究结果验证了双模态运动-颜色融合范式在基于SSVEP的脑机接口(BCI)中的应用前景,能够同时提升脑部反应强度和用户舒适度。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2025年3月2日发布。 https://doi.org/10.1101/2025.02.27.640020 doi:Biorxiv Preprint
收到:2023年9月18日;接受:2023年12月25日摘要通过听觉,视觉和文本提示识别多方面情绪的研究是一个快速发展的跨学科领域,涵盖了心理学,计算机科学和人工智能领域。本文研究了用于隔离和识别这些模式中复杂情绪状态的方法的范围,目的是描述进步并确定未来研究的领域。在声音领域中,我们探索了信号处理和机器学习技术的进展,从而有助于从人声弯曲和音乐安排中提取细微的情感指标。视觉情绪识别是通过面部识别算法,肢体语言分析以及上下文环境信息整合的有效性来评估的。使用自然语言处理技术检查基于文本的情感识别,以感知书面语言的情感和情感内涵。此外,本文考虑了这些不同情绪数据来源的融合,考虑了构建能够解释多模式输入的连贯模型时所面临的挑战。我们的方法涵盖了最近研究的荟萃分析,评估了各种方法的有效性和精度,并确定了常见的指标进行评估。结果表明,偏爱深度学习和混合模型,以利用多种分析技术的优势来提高识别率。然而,诸如情感的主观性质,表达中的文化差异以及广泛的注释数据集的必要性持续存在的挑战,这是重大障碍。总而言之,这篇综述倡导了更多细微的数据集,增强的跨学科合作以及一个道德框架来管理情绪识别技术的实施。这些技术的潜在应用是广泛的,从医疗保健到娱乐,并且需要一致的努力来完善和道德将情感识别纳入我们的数字互动中。关键字:多模式情绪,融合,机器学习,深度学习,回归,CNN,RNN。
人类如何实现如此高度的亲社会行为是一个引人注目的主题。探索人类亲社会性的神经基础已在近几十年来引起了人们的重大关注。然而,人类亲身社会性的基础神经机制仍有待阐明。为了解决这一知识差距,我们分析了15场经济游戏中的多模式脑成像数据和数据。结果揭示了大脑特征和亲社会行为之间的几个重要关联,包括较强的半球连通性和较大的call体体积。更大的功能分离和整合,以及较少的髓磷脂图与较厚的皮质相结合,与亲社会行为有关,尤其是在社会大脑区域内。当前的研究表明,这些指标是人类亲社会行为的大脑标志物,并为人类亲社会行为的结构和功能性大脑基础提供了新的见解。
组合脑电图和fMRI允许整合精细的空间和准确的时间分辨率,但如果实时执行以实现神经反馈(NF)循环,则会引起许多挑战。在这里,我们描述了在运动成像NF任务中同时获得的脑电图和fMRI的多模式数据集,并补充了MRI结构数据。这项研究涉及30名健康志愿者接受五次培训。我们在以前的工作中展示了同时EEG-FMRI NF的潜力和优点。在这里,我们说明了可以从该数据集中提取的信息的类型并显示其潜在用途。这代表了NF的EEG和fMRI的第一个同时记录之一,在这里我们提出了第一个开放访问BI-MODAL模式NF数据集,该数据集整合了EEG和FMRI。我们认为,这将是(1)多模式数据集成的进步和测试方法,(2)提高所提供的NF质量,(3)改善在MRI下获得的EEG的方法论,并(4)使用多模式信息研究了运动象征的神经标志物。
表2。有关反馈预测和客观评估的文献摘要。方法列是指算法:基于规则的(RB),条件随机字段(CRF),隐藏的马尔可夫模型(HMM),深神经网络(DNN),长期短期记忆,歧视专家的潜在混合物(LSTM)。反馈列是指研究的反馈,第一字母表示所预测的类型:仅通用(g)或特定(g/s);第二个字母指的是方式:口头(V)和/或手势(G)。特征列是指特征的类型:韵律(P),形态 - 句法(M),手势/视觉(G),自动回归(A)。误差范围(MOE)列指示用于评估地面真相开始反馈的窗口( - 表示丢失的信息)。分数列包含指标和相关得分:f-Score(f),Precision(p),召回(r)。
摘要 - 近年来,自主驾驶技术的兴起强调了可靠软件在确保安全和性能方面的重要性。本文提出了一种使用多模式学习的自动驾驶软件系统中即时软件缺陷预测(JIT-SDP)的新方法。提出的模型利用了多模式变压器,其中预训练的变压器和组合模块与软件系统数据集的多个数据模式相结合,例如代码功能,更改指标和上下文信息。适应多模式学习的关键点是利用不同数据模式(例如文本,数值和分类)之间的注意机制。在组合模块中,在文本数据和包含分类数据和数值数据的表格数据和表格特征上的输出组合在一起,以使用完全连接的层产生预测。对从GitHub存储库(Apollo,Carla和Donkeycar)收集的三个开源自动驾驶系统软件项目进行的实验表明,拟议的方法显着超过了有关评估指标的最先进的深度学习和机器学习模型。我们的发现突出了多模式学习的潜力,以通过改进的缺陷预测来增强自主驾驶软件的可靠性和安全性。
数学领域中的学术文章通常包括定理(和其他类似定理的环境)及其证明。本文建立在我们以前的作品[11]的基础上,该论文旨在将科学文献从PDF文章的集合转变为以定理为中心的开放知识基础(KB)。在本文中,我们主要集中于[11]中引入的管道的提取方面。我们深入探索了多种模式方法,并评估了模型的长期段落序列的影响。要澄清,在本文中,我们使用定理的意义与L a t e X中使用的定理相同(例如,按\ new Theorem命令):一个定理的环境是一种结构化的陈述,可能是以特定方式进行编号的,用于以特定的方式进行编号,用于正式(通常是数学)的陈述:也可以代表一个正式的陈述:也可以是empormem,emporm a remem,一个定义,一个定义,一个定义,一个定义,一个定义,一个定义,等等,等等,等等,等等。定理,我们的意思是任何此类陈述。 通过证明,我们的意思是在证明环境中通常在L A T E X中呈现的内容:结果的证明或证明草图。 我们通过根据多模式机器学习来签署一种方法来解决定理 - 防护识别问题,该方法将文章的每个每个款分类为基于科学语言的基本,定理和证明标签,以印刷信息和PDF文档的视觉渲染为基础。 此外,定理,我们的意思是任何此类陈述。通过证明,我们的意思是在证明环境中通常在L A T E X中呈现的内容:结果的证明或证明草图。我们通过根据多模式机器学习来签署一种方法来解决定理 - 防护识别问题,该方法将文章的每个每个款分类为基于科学语言的基本,定理和证明标签,以印刷信息和PDF文档的视觉渲染为基础。此外,
摘要。在Horizon 2020资助Clean Sky 2计划中,组合项目的认知协作旨在将路线图定位为单飞行器(SPO)和人类智能机器组合。建立在人为因素的现状之上,仔细检查要考虑组成人类智能机器团队(HIMT)的因素和参数。每个参数都会影响积极或负线。一个好的Himt是一个传达,共享知识,信息,合作和信任的HIMT,以确保最高水平的飞行安全。本评论显示了HIMT中双向交流的多模式的附加值。多模式将允许在两个方向上保持口头和非语言交流。对在不同条件下的每种方式和互动方式的好处进行了审查,以及每种方式如何相互补充,以获得自然,高效和可靠的更好的双向交流。目的是以清晰,准确和简洁的方式传输信息,但也要确保接收者受到好评(即cccteammate和驾驶员)和良好的理解。每种模式都将允许Ccteammate根据上下文和手头任务以最佳方式呈现和/或表示信息。