本综述评估了用于研究怀孕期间母体影响如何影响后代小胶质细胞(中枢神经系统的免疫细胞)发育的体外模型。所研究的模型包括原代小胶质细胞培养物、小胶质细胞系、iPSC 衍生的小胶质细胞、PBMC 诱导的小胶质细胞样细胞、源自 iPSC 的 3D 脑器官和霍夫鲍尔细胞。我们将评估每种模型复制发育大脑体内环境的能力,重点关注其优势、局限性和实际挑战。重点介绍了可扩展性、遗传和表观遗传保真度以及生理相关性等关键因素。小胶质细胞系具有高度可扩展性,但缺乏遗传和表观遗传保真度。iPSC 衍生的小胶质细胞提供中等的生理相关性和患者特异性遗传见解,但面临着重编程固有的操作和表观遗传挑战。源自 iPSC 的 3D 脑类器官为研究复杂的神经发育过程提供了先进的平台,但需要大量资源和技术专长。霍夫鲍尔细胞是位于胎盘中的胎儿巨噬细胞,与小胶质细胞具有共同的发育起源,它们独特地暴露于产前母体因素,并且根据胎儿屏障成熟度表现出不同的表观遗传保真度。这使得它们特别适用于探索母体对小胶质细胞发育胎儿编程的影响。该综述的结论是,没有一个模型能够全面捕捉母体对小胶质细胞发育的所有方面的影响,但它提供了根据特定研究目标和实验限制选择最合适模型的指导。
3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。 *相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。 缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。 在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。 我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。 我们在计算上筛选了跨越各种化学类别的12,000多种化合物。 对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。 值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。 其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。 患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。*相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。我们在计算上筛选了跨越各种化学类别的12,000多种化合物。对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。我们的工作证明了在与ML串联串联中使用表型筛选的使用可以有效地识别具有很少已知分子靶标的高度异质指示中个性化处理的治疗铅。关键字:胶质母细胞瘤,人工智能,药物发现,机器学习简介胶质母细胞瘤多形(GBM)是人类成年人中最常见和最具侵略性的原发性脑肿瘤,其特征是遗传驱动因素的实质异质性和肿瘤微环境1-3。在过去20年中,新诊断的GBM患者的护理标准包括手术,替莫唑胺(TMZ)和电离辐射(IR),延长了12个月至15个月患者的总体生存期4,5。大规模的基因组分析增强了我们对GBM分子生物学的理解,后者支持
学生的数量和可用的资源用于正确的学习发展。定义和分类临床和基础研究模型是该计划的重要组成部分。向学生解释这些模型的最佳方法是通过对每个模型的不同特征进行结构化的说明,然后是在该领域工作的专家讲座。在课程中,学生必须准备一个由生物医学科学项目研讨会的小型科学Proyect。
,例如Rasp和Al。2018,Yuval和Yuval和O'Gorman(2021),KWA在Al。 (2023)2018,Yuval和Yuval和O'Gorman(2021),KWA在Al。(2023)
钒氧化还原流量电池(VRB)系统涉及复杂的多物理和多时间尺度相互作用,其中电解质流速在静态和动态性能中起关键作用。传统上,固定流量已用于操作方便。但是,在当今高度动态的能源市场环境中,根据运营条件调整流量可以为提高VRB能源转换效率和成本效益提供显着优势。不幸的是,将电解质流速纳入传统的多物理模型对于VRB管理和控制系统来说过于复杂,因为实时操作要求用于船上功能的低计算和低复杂模型。本文介绍了一种新型的数据驱动方法,该方法将流速集成到VRB建模中,增强了数据处理能力和VRB行为的预测准确性。所提出的模型采用封闭式复发单元(GRU)神经网络作为其基本框架,在捕获VRB的非线性电压段方面表现出了非凡的熟练程度。GRU网络结构经过精心设计,以优化模型的预测能力,流速被视为关键输入参数,以解释其对VRB行为的影响。模型改进涉及分析在VRB操作中在各种流速下获得的精心设计的模拟结果。还设计和进行了实验室实验,涵盖了电流和流速的不同条件,以验证所提出的数据驱动的建模方法。对几种最新算法进行了比较分析,包括等效电路模型和其他数据驱动的模型,证明了考虑流速的基于GRU的VRB模型的优越性。由于GRU在处理时间序列数据方面的出色能力,该模型在宽范围内提供了令人印象深刻的准确终端电压预测,低误差率不超过0.023 V(1.3%)。这些结果表明了所提出的方法的功效和鲁棒性,突出了对管理和控制系统设计的准确VRB建模中流速的新颖性和重要性。
在2017年,作为可持续发展目标的一部分,对全球心理健康议程进行了重新评估,旨在扩大对受精神障碍影响的个人的服务(1)。这种重新评估引起了十多年的研究证据,强调了各种环境的跨学科实践,重点是防止和治疗精神障碍并促进心理健康。尽管研究取得了重大进展,但对日常生活的实际影响仍然很慢。心理健康服务通常就质量而言落后于物理卫生服务。集体无法解决这一危机的情况导致人类潜力和不必要的痛苦丧失(2)。此外,自杀率逐年逐年稳步上升,全球一百人死亡中有1个归因于此原因(3)。在2023年的第一个月中,哥伦比亚报告了11,411例自杀病例,大多数发生在男性中(9,933)。这与2022年同期相比增加,总共有11,055例,其中9,564例涉及男性。在这些病例中,在20至39岁的年龄范围内发生了51.9%(5,920),在Manizales中报告了17例病例(4)。根据公共卫生部门的报告,2021年有30起自杀案件,比2020年少4例。与全球趋势一致,大多数这些病例(93%)在男性中(5)。15至44岁的个体自杀行为的增长与大学生年龄范围内有关。近年来,这种人群面临着自杀的复杂挑战,需要进行全面的干预(6)。因此,必须确定使该人群更加脆弱并致力于预防的风险因素。许多研究都指出了与自杀念头,自杀未遂和已完成的自杀相关的多种危险因素。这些因素包括家庭瓦解,居住的变化,尤其是搬迁到家上大学(7)自杀企图的频率以及自杀企图和完成自杀的家族史(8-10)。作者强调了认识到自杀行为的家族史可能会通过模仿而导致学习形式的重要意义。他们强调,尽管自杀行为本身并不是遗传性的,但仍然存在某些精神疾病(例如抑郁症)的遗传倾向,而抑郁症反过来又是与这种行为相关的重要危险因素。
大规模脑成像数据集的一个主要目标是提供用于研究异质弹出的资源。从这些数据集中为各个受试者提供功能性脑网络的表征将具有预测认知或临床特征的巨大潜力。我们第一次提出了一种技术,即概率的功能模式(sprofumo),该技术可扩展到英国生物库(UKB),有预期的100,000名参与者,并且在个人和人群中层次估算了层次的功能性脑网络,同时对两种信息之间的双向流量进行了影响。使用仿真,我们显示了模型的效用,尤其是在涉及显着的跨主题可变性的情况下,或者需要在网络之间划定细粒度的差异。随后,通过将模型应用于4999名UKB受试者的静止状态fMRI,我们将静止状态网络(RSN)绘制为单个受试者,其详细范围比以前在UKB(> 100 rsns)中可能绘制了,并证明这些RSN可以预测somecorimotor andsocorimotor and somecorimotor and Emperife and Elighe colesions and Level Consoge。此外,我们证明了该模型的几个优点,而不是独立的组件分析与双重回归(ICA-DR)相结合,尤其是在估计RSN的空间配置和认知性状的预测能力方面。所提出的模型和结果可以为将来从大数据中对个性化的脑功能纤维进行调查打开新的门。