背景和目标:由于失去随访的患者的数量,纵向研究中缺少数据是一个无处不在的问题。内核方法通过成功管理非矢量预测因子(例如图形,字符串和概率分布)来丰富机器学习场,并成为分析由现代医疗保健诱导的复杂数据的有希望的工具。此pa-提出了一组新的内核方法,以处理响应变量中缺少的数据。这些方法将用于预测糖化血红蛋白(A1C)的长期变化,这是用于诊断和监测糖尿病进展的主要生物标志物,以探索探索连续葡萄糖(CGM)的预测潜力。
1 巴塞尔大学医院医学与临床研究系传染病与医院流行病学科,瑞士巴塞尔 4031;2 巴塞尔大学医学院,瑞士巴塞尔 4031;3 Certara UK Limited,英国谢菲尔德;4 瑞士洛桑大学医院和洛桑大学实验室医学与病理学系临床药理学服务与实验室;5 巴塞尔大学巴塞尔州立大学,瑞士布鲁德霍尔茨;6 瑞士洛桑大学医院传染病服务中心;7 瑞士苏黎世大学医院传染病与医院流行病学系;8 瑞士伯尔尼大学医院传染病系; 9 瑞士卢加诺日内瓦大学及瑞士南部大学卢加诺州立医院传染病科;10 瑞士日内瓦大学日内瓦大学医院传染病科;11 圣加仑州立医院传染病和医院流行病学系
为了实现气候目标,未来的能源系统必须严重依赖风能和光伏 (PV) 等可变可再生能源 (VRES)。随着 VRES 份额的增加,灵活性以及不同灵活性选项的智能相互作用等主题变得越来越重要。分析灵活性选项和增强未来能源系统设计的一种方法是使用能源系统建模工具。尽管存在各种可公开访问的模型,但并没有明确的评估来评估这些工具中如何体现灵活性。为了弥补这一差距,本文提取了灵活性表示的关键因素,并引入了灵活性和影响因素的新分类。为了评估当前的建模状况,我们向开放能源建模工具的开发人员发送了一份调查问卷,并使用新推出的开放 ESM 灵活性评估工具 (OpFEl) 进行分析,这是一种开源评估算法,用于评估工具中不同灵活性选项的表示。结果显示,各种不同的工具涵盖了灵活性的大多数方面。可以看出,出现了包括部门耦合元素的趋势。然而,当前模型中仍未充分体现储能和网络类型灵活性以及涉及系统运行的方面,应更详细地纳入其中。没有一个模型能够高度涵盖所有类别的灵活性选项,但通过软耦合将不同模型组合起来可以作为整体灵活性评估的基础。这反过来又可以基于 VRES 对能源系统进行详细评估。
摘要:本文报道了基于有限差分时域 (FDTD) 和有限元法 (FEM) 的介电谐振器材料测量装置建模的最新进展。与介电谐振器设计方法不同,介电谐振器设计方法使用贝塞尔函数的解析展开来求解麦克斯韦方程,而本文仅使用解析信息来确保场的固定角度变化,而在纵向和径向方向上应用空间离散化,从而将问题简化为 2D。此外,当在时域中进行离散化时,全波电磁求解器可以直接耦合到半导体漂移扩散求解器,以更好地理解和预测基于半导体的样品的谐振器的行为。本文将 FDTD 和频域 FEM 方法应用于介电样品的建模,并根据 IEC 规范规定的 0.3% 范围内的测量结果进行验证。然后采用内部开发的耦合多物理场时域 FEM 求解器,以考虑电磁照明下的局部电导率变化。由此展示了新方法,为介电谐振器测量的新应用开辟了道路。
大规模脑成像数据集的一个主要目标是提供用于研究异质弹出的资源。从这些数据集中为各个受试者提供功能性脑网络的表征将具有预测认知或临床特征的巨大潜力。我们第一次提出了一种技术,即概率的功能模式(sprofumo),该技术可扩展到英国生物库(UKB),有预期的100,000名参与者,并且在个人和人群中层次估算了层次的功能性脑网络,同时对两种信息之间的双向流量进行了影响。使用仿真,我们显示了模型的效用,尤其是在涉及显着的跨主题可变性的情况下,或者需要在网络之间划定细粒度的差异。随后,通过将模型应用于4999名UKB受试者的静止状态fMRI,我们将静止状态网络(RSN)绘制为单个受试者,其详细范围比以前在UKB(> 100 rsns)中可能绘制了,并证明这些RSN可以预测somecorimotor andsocorimotor and somecorimotor and Emperife and Elighe colesions and Level Consoge。此外,我们证明了该模型的几个优点,而不是独立的组件分析与双重回归(ICA-DR)相结合,尤其是在估计RSN的空间配置和认知性状的预测能力方面。所提出的模型和结果可以为将来从大数据中对个性化的脑功能纤维进行调查打开新的门。
表2列出了发电技术的技术经济参数,包括成本,运营生活,效率和平均能力因素。成本(资本和固定),运营生活和效率数据是从国际可再生能源机构[7,8,9]的报告中收集的,并且适用于整个非洲。这些成本数据包括可再生能源技术的预计成本降低,如表3所示。假定在建模期间,假定化石产生技术的参数的成本和性能是恒定的。在此分析中,仅考虑固定电厂成本,它们捕获可变的操作和维护成本。突尼斯太阳能PV,风能和水力发电技术的特定国家能力因素来自可再生能源忍者和
自主性与能源的考虑背景不同 2 [177,178] 本文仅将自主性作为未来目标提及 3 [179–181] 该研究的空间分辨率与我们对本地能源系统的定义不符(参见第 1 节) 122 单个消费者/家庭/建筑 41 [182–222] 单个商业应用 57 o 农业水井 2 [223,224] o 海水淡化装置 7 [225–231] o 蜂窝基站/电信装置 11 [232–242] o 医院/医疗机构 5 [243–247] o 酒店 5 [248–252] o 图书馆 1 [253] o 无线传感器节点 1 [254] o 机械实验室 1 [255] o 农业应用(农场或灌溉区) 6 [256–261] o 选民登记中心1 [262] o 沙漠狩猎营地 1 [263] o 旅游设施 1 [264] o 充电站 1 [265] o 采矿场 3 [266–268] o 工厂/企业 3 [269–271] o 炼油厂 1 [272] o 道路照明系统 1 [273] o 大学设施/学校 4 [274–277] o 清洁水和厕所系统 1 [278] o 废水处理厂 1 [279] 大区域 3 [280–282] 一个或多个国家 21 [283–303] 单个能源工厂/技术的分析 35 [304–338] 航空航天应用 2 [339,340] 气候分析 4 [341–344] 研究重点是能源系统的控制策略 13 [345–357] 研究引入了一种没有自主性案例研究的新模型 3 [358–360] 研究开发了离网区域的负载曲线 2 [361,362] 研究侧重于定性分析 15 [363–377] 对给定的 100% 可再生系统的分析 2 [378,379] 文本语言:韩语 2 [380,381] 未找到出版物 1 [382]
复杂的磁力机械耦合,该耦合控制了磁性elastomers(MRES)的材料响应(MRES)需要计算工具来协助设计过程。计算模型通常基于有限元框架,这些元素框架通常简化并理想化磁性源和相关的磁性边界条件(BCS)。但是,这些简化可能会导致实际物质行为与建模的简化,即使在定性层面也是如此。在这项工作中,我们提供了一项有关磁性BCS影响的全面研究,并证明了在整个材料结构建模策略中考虑它们的重要性。为此,我们实施了一个磁性机械框架,以模拟由理想化的远场均匀磁性源,永久磁铁,线圈系统和带有两个铁杆的电磁体产生的磁场下的软磁和硬磁MR。根据所使用的磁设置,结果在计算的局部磁截图和磁场中揭示了显着的异质性。基于材料和结构贡献的详细讨论为将来的作品提供了强大,严格且必要的建模途径。
基于得分的扩散模型使用时间转移的扩散过程从未知目标分布中生成样品。这种模型代表了工业应用中的最新方法,例如人造图像产生,但最近注意到,通过考虑具有重尾部特征的注入噪声,可以进一步提高其性能。在这里,我将生成扩散过程的概括性化为一类广泛的非高斯噪声过程。我考虑由标准高斯噪声驱动的前进过程,并以超级强制的泊松跳跃为代表有限的活动莱维过程。生成过程被证明由依赖跳跃幅度分布的广义分数函数控制。概率流ode和SDE配方都是使用基本技术努力得出的,并且用于从多元拉普拉斯分布中得出的跳跃振幅实现。非常重要的是,对于捕获重尾目标分布的问题,尽管没有任何重尾特性,但跳跃延伸拉普拉斯模型的表现就超过了由α-稳定噪声驱动的模型。该框架可以很容易地应用于其他跳跃统计数据,这些统计数据可以进一步改善标准扩散模型的性能。
干细胞移植已成为再生医学的基石,因为它能够分化为各种细胞类型及其在免疫调节,治疗免疫学疾病和血液学恶性肿瘤中的潜在应用(1)。在各种干细胞类型中,多能胚胎干细胞(ESC)和多能干细胞(ASC)的分化潜力进行了广泛的研究。ESC具有较高的多能性,使它们能够在人体中产生任何细胞类型。然而,围绕其使用的伦理问题导致人们更加关注替代来源,例如诱导的多能干细胞(IPSC)和ASC,包括间质干细胞(MSC),神经干细胞(NSC)和血肿干细胞(HSC)。MSC通过调节T,B,天然杀伤(NK)和树突状细胞来显示免疫调节作用,使其成为自身免疫和炎症性疾病的有前途的工具(2,3)。来自人类脐带血的HSC已广泛用于造血和免疫相关疾病的移植疗法中(4)。HSC移植(HSCT)取得成功,取决于归宿,迁移,植入,自我更新和分化。这些复杂的过程受生长因子,细胞因子和利基相互作用的调节。尽管HSCT具有治疗潜力,但诸如移植物抗宿主病(GVHD),移植排斥和可变的患者结局等挑战持续存在。正在探索诸如免疫耐受性诱导和遗传的策略以及治疗修饰,以增强干细胞的存活和整合(5-8)。正在探索诸如免疫耐受性诱导和遗传的策略以及治疗修饰,以增强干细胞的存活和整合(5-8)。最近的进步表明,将计算模型与免疫数据集成为改善干细胞移植的新途径(9)。机器学习模型可以鉴定重新生成医学中涉及自我更新和谱系规范的关键转录因子和基因网络(10,11)。这些方法还促进了健康干细胞和癌症干细胞(CSC)的比较,这有助于开发恶性肿瘤的靶向疗法(12,13)。免疫学研究主题的前沿,“使用计算建模改善干细胞移植交付”典范这种跨学科方法,并在一系列编译的文章中汇集了开创性的研究,从而贡献了独特的