©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
摘要 本文讨论了可用的人工智能 (AI) 模型的组合,即神经语言模型 (NLM) 与经过训练的 GAN 和人类解释,以促进架构构思。工作流程使用语义提示识别推测设计的概念场景。结果成为视觉参考,以补充修订的语义描述,以指导 VQGAN+CLIP 模型,利用对结果的控制,然后使用降维对结果进行排序,并进一步策划以训练其他模型 (GAN)。NLM 对文本输入的解释增加了跨越更大语义距离的可能性,以实现创造性的视觉结果,而 AI-人类步骤的嵌套工作流程可以自动查询更大的解决方案空间。此外,它还考虑了基于语言 (NLM) 的处理模型 (LeCun, 2021) 导致的视觉数据 (Hadamard, 1945) 的低带宽、还原编码问题,这可能会限制设计机构。
临床前扰动筛选,其中在疾病模型上系统地测试了遗传,化学或环境扰动的影响,由于其规模和因果性质,对机器学习增强的药物发现具有巨大的希望。预测模型可以根据分子特征来推断以前未经测试的疾病模型的扰动反应。这些在计算机标签中可以扩展数据库并指导实验优先级。但是,对扰动特异性效应进行建模并在各种生物环境中产生健壮的预测性能仍然难以捉摸。我们介绍了LEAP(自动编码器和预测变量的分层集合),这是一个新颖的集合框架,可改善稳健性和概括。LEAP利用多个Damae(数据增强蒙版的自动编码器)表示和套索回归器。通过结合从不同随机初始化中学到的多种基因表达表示模型,在预测未见细胞系,组织和疾病模型中基因本质或药物反应方面始终胜过最先进的方法。值得注意的是,我们的结果表明,结合表示模型而不是仅预测模型会产生出色的预测性能。超出其性能增长,LEAP在计算上是有效的,需要最小的高参数调整,因此很容易将其纳入药物发现管道中,以优先考虑有希望的目标并支持生物标志物驱动的分层。这项工作中使用的代码和数据集可公开使用。
1加利福尼亚大学大气科学系,洛杉矶,加利福尼亚州90024,美国2 Max-Planck-Institut Ftir Meteorologie,W-000 Hamburg,FRG 3 Koninklijk Nederlands MeteOllands MeteOlogisch Instituut劳伦斯·利维莫尔国家实验室,利维莫尔,加利福尼亚州94550,美国6国家大气研究中心博尔德,80307,美国7,美国7地球物理学与行星物理学研究所,加利福尼亚州洛杉矶,CA 90024,CA 90024,美国,美国,美国霍克学会,霍克斯大学,牛津大学,牛津大学,牛津大学,牛津大学,牛津大学,牛津大学。美国新泽西州普林斯顿实验室,美国10大气与海洋科学计划,普林斯顿大学,普林斯顿大学,新泽西州08542,美国11,美国11级水流过程实验室,NASA Goddard太空飞行中心,Greenbelt,Greenbelt,MD 20771,美国MD 20771,USA,USA,美国12个气象研究所,日本12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-纳吉米,tsukuba,tsukuba,tsukuba,tsukuba,我
学生的数量和可用的资源用于正确的学习发展。定义和分类临床和基础研究模型是该计划的重要组成部分。向学生解释这些模型的最佳方法是通过对每个模型的不同特征进行结构化的说明,然后是在该领域工作的专家讲座。在课程中,学生必须准备一个由生物医学科学项目研讨会的小型科学Proyect。
糖尿病通常称为糖尿病,是一组代谢性疾病,其特征是血糖水平的慢性升高,这是由于胰岛素产生不足,细胞对细胞外胰岛素的缺陷反应和/或葡萄糖代谢受损而导致的。大多数糖尿病患者的两种主要类型是1型糖尿病(T1DM)和2型糖尿病(T2DM),每个糖尿病都有自己的病理生理特征。t1d是一种自身免疫性条件,人体的免疫系统攻击并破坏胰腺中胰岛素的β细胞。这导致缺乏胰岛素,这是调节血糖水平和细胞葡萄糖摄取的重要激素。因此,患有T1D的人依靠终身胰岛素治疗来控制其血糖水平。相比之下,T2DM的特征是胰岛素抵抗,该胰岛素耐药性不对胰岛素有效反应,并与相对胰岛素的缺乏症相结合。这种形式的糖尿病通常与肥胖,久坐的生活方式和/或遗传因素有关,并且通过生活方式的改变和口服药物来管理。动物模型在糖尿病研究中起着至关重要的作用。然而,鉴于T1DM和T2DM之间的明显差异,研究人员必须采用针对每种条件的特定动物模型,以更好地了解每种情况下的机制受损机制,并评估新疗法的效率。在这篇综述中,我们讨论了1型和2型糖尿病研究中使用的不同动物模型,并讨论了它们的优势和局限性。
考虑由成对测量组成的数据,例如对象对之间是否存在链接。例如,这些数据出现在蛋白质相互作用和基因调控网络、作者-收件人电子邮件集合和社交网络的分析中。使用概率模型分析成对测量需要特殊的假设,因为通常的独立性或可交换性假设不再成立。在这里,我们引入了一类用于成对测量的方差分配模型:混合成员随机块模型。这些模型结合了实例化密集连接块(块模型)的全局参数和实例化连接中节点特定变异性的局部参数(混合成员)。我们开发了一种用于快速近似后验推理的通用变分推理算法。我们展示了混合成员随机块模型的优势,并将其应用于社交网络和蛋白质相互作用网络。关键词:分层贝叶斯、潜在变量、均值场近似、统计网络分析、社交网络、蛋白质相互作用网络
亲爱的编辑,我们最近在《转化精神病学》上发表了一篇文章,探讨了在全脑水平上评估脑功能的策略 [1]。在这篇评论中,我们介绍了几种方法,从功能性磁共振成像到功能性超声再到钙成像。对于每一种技术,我们都简要介绍了它的发展历史、物理概念、一些关键应用、潜力和局限性。我们得出的结论是,在网络水平上对啮齿动物大脑进行成像的方法正在不断发展,并将增进我们对大脑功能的理解。Zhuo 和同事的一篇评论进一步增加了解决精神病学学科从动物模型到患者的“转化”问题的复杂性 [2]。他们提出,需要彻底审查用于开发精神疾病动物模型的方法,甚至可能需要修改。例如,迄今为止,大多数精神疾病的啮齿动物模型都是使用简单的药物输注 [3] 和/或社会心理刺激 [4] 建立的。然而,关键问题是这些操作如何改变大脑的结构和功能,以及这些模型是否真正反映了人类精神疾病的病理生理学。特别是因为很难评估是否可以说从啮齿动物到人类存在逆向推理。这是一个真实且可以接受的说法。然而,这正是临床前成像旨在实现的。通过绘制动物模型中大脑网络的动态响应,并将其(如果可能)与临床研究中报告的响应进行比较,我们可以获得定量数据和参数,以确定我们的模型是否有效转化 [ 5 ]。如果这些指标表明网络级修改在时间和空间上与在人类中观察到的相似,我们可以利用更具侵入性和更具体的方法来进一步研究动物模型中的大脑记录。否则,我们必须有信心和正确性继续前进并尝试其他解决方案。最近有两个例子。 2019 年,我们证实了小鼠蓝斑核 (LC) 去甲肾上腺素能活性与大量大型脑网络(尤其是突显网络和杏仁核网络)的参与之间存在因果关系 [6]。此外,我们还可以将网络变化与去甲肾上腺素 (NE) 周转的直接标志物以及 NE 受体在整个脑部的分布联系起来。特定脑网络动态与 LC 活性和 NE 受体密度相关的假设源自人类压力研究和药理学研究 [7,8]。然而,由于不可能选择性地刺激人类的 LC,因此十多年来,这一假设一直只是一个假设。
在此背景下,考虑到这些技术引发的数据保护问题,爱尔兰监管机构要求 EDPB 根据 GDPR 第 64(2) 条就一般适用事项发表意见。该请求涉及在人工智能(“AI”)模型的开发和部署阶段处理个人数据。该请求更详细地询问:(1)何时以及如何将 AI 模型视为“匿名”;(2)控制者如何证明合法利益作为开发和(3)部署阶段的法律依据的适当性;(4)在 AI 模型的开发阶段非法处理个人数据会对 AI 模型的后续处理或运行产生什么影响。