Abelian-Higgs模型[1]是一种相对论场理论,其在(2Þ1)维度中的激发采用拓扑稳定的孤子的形式,称为涡旋。该场理论由一个复杂的标量场φ组成,该场φ耦合到u - 1Þ量规场Aμ。静态理论等同于有效的金茨堡 - 兰道理论[2],它描述了一个通过涡旋数量量化的超导体的磁场。涡流解决方案的动力学是这两种理论不同的地方。 Abelian-Higgs模型具有Lorentz不变性[3-5]的二阶动力学[3-5],而依赖时间的Ginzburg-Landau模型则表现出一级动力学[6,7]。这是我们将在本文中重点关注的前二阶动力。请注意,在(3þ1)中的尺寸涡流显示为像弦类似的物体,所产生的宇宙字符串,如果存在,则可以通过对早期宇宙宇宙学的重力贡献来检测到它们[8]。涡流散射已经对单个参数λ的所有值进行了很好的研究[3 - 5,9,10]。此参数将模型分为两种类型; I型I(λ<1)其中涡流表现出长距离吸引力,而II型(λ> 1),其中涡旋在远距离排列。相比之下,在临界耦合(λ¼1)处,
mtj。e EFF包括Exchange(E#$),Magnetostatic(E 5678),各向异性(E 9)和外部(E#$%)
2025年3月5日,Centrale Bank Van Aruba(CBA)发表了最新的经济前景。 本出版物包含简短(2025-2026)和中期(2027-2028)1的经济预测。 根据CBA的估计,真正的国内生产总值(GDP)在2025年可能会扩大2.1%,而2026年的国内生产总值(GDP)可能会增长2.1%,而降低了2.9%,而与2024年注册的6.8%的增长相比。。2025年3月5日,Centrale Bank Van Aruba(CBA)发表了最新的经济前景。本出版物包含简短(2025-2026)和中期(2027-2028)1的经济预测。根据CBA的估计,真正的国内生产总值(GDP)在2025年可能会扩大2.1%,而2026年的国内生产总值(GDP)可能会增长2.1%,而降低了2.9%,而与2024年注册的6.8%的增长相比。这种减速主要是由于空中座椅容量限制导致的旅游出口增长不太浮力增长(即2025年 +2.3%,2026年 +2.1%)。因此,预计还预计,实际消费中旅游驱动的增长(即2025年为 +0.8%,2026年的 +0.7%)也被预测得以缓和。
冰芯测量结果显示出多种大气中的CO 2变化(减少,减少或保持稳定),呈千禧一代北大西洋寒冷时期,称为Stadials。这些对比趋势的原因仍然难以捉摸。碳富含深海的通风可能会深刻影响大气中的CO 2,但其千禧一代的历史受到限制。在这里,我们提出了过去150,000年的良好高分辨率深度大西洋酸度记录,这显示了迄今为止五种迄今未发现的体型海洋通风模式,对深海碳存储和相关大气CO 2变化产生了不同的后果。我们的数据提供了观察性证据,以表明在大气CO 2显着上升时,强烈且通常广泛的南部海洋通风释放了大量的深海碳。相比之下,其他体积的特征是通过南大西洋和北大西洋的通风弱,促进了呼吸碳的积累,因此减少或逆转了深海碳损失,导致大气中CO 2的升高甚至下降。我们的发现表明,深海碳储存和大气CO 2的千禧年尺度变化是通过两个极性区域的相互作用的多种海洋通风模式调节的,而不是单独的南方海洋,这对于对过去和未来的碳循环调节对气候变化至关重要。
可调节的谐振峰对于在生物传感,过滤和光学通信中的高精度光子设备是必需的。在这项研究中,我们专注于具有不同时期的双ribbon二维金光栅,并详细检查了不同的光栅时期的瑞利条件,以了解共振波长的激发。我们在不对称的双丝带金光栅上展示了可调节的共振行为,周期为400至600 nm。该结构由二硫化钼(MOS 2)单层上的亚波长金带组成,并由二氧化硅底物支撑。在可见的谐振波长时,对场分布的分析揭示了表面等离子体(SP)激发,并伴随着传播衍射顺序转化为evaneScent的波。当谐振峰出现在透射衍射顺序消失的波长下时,SP会在MOS 2-戈尔德色带界面和传输域内激发。相比之下,通过消失反射衍射顺序,SP在金带空气界面和反射域中激发。了解SP激发波长突出了这些光栅对可调纳米级光子设备的潜力。它们的精确共振控制和简单的制造使其适合可扩展的光学应用。
摘要可再生能源(RES)和储能技术的开发是现代电力系统跨形成的关键要素。作为最干净和大多数的能源来源之一,太阳能的重要性越来越重要,需要优化其在本地电力系统中的使用。这项研究分析了带有太阳能发电厂和储能设备的本地电源系统(LES)设备的参数,并在不同的停电期间确定其操作模式。作为研究的一部分,使用REOPT平台进行了4个不同日期 - 6月22日,3月22日,3月22日和9月22日,使用REOPT平台对LES接收者的可靠性进行分析。在第二步中,使用系统顾问模型(SAM)软件分析太阳能系统模式。分析表明,与南方方向的模块子组件的方向相对于±45°,可以在早晨和傍晚的小时内提高功率输出。还表明,模块在两个子组件中的排列允许在中午降低倒置器的功率截止,因此,有一个模块排列,截止值为1.743%,并且有两个亚组件,为0.339%。
拓扑激发,例如Majorana零模式,是编码量子信息的有前途的途径。基于其编织的Majorana Qubit的拓扑保护门将需要某种形式的网络。在这里,我们建议通过在微波腔QED设置中与光纠缠的Majorata物质来构建这样的网络。我们的方案利用了光引起的相互作用,该相互作用与所有Majorana纳米级电路平台通用。这种效应源于在一维物理主要模式链中光耦合的参数驱动。我们的设置可以实现Majorana量子计算平台中所需的所有基本操作,例如融合,编织,关键的T-Gate,读取,以及重要的是,物理Majora Modes的稳定或校正。
在减轻碳排放的全球举措的背景下,功率电网经历了一个变革性的时期,其标志是可再生能源的整合不断升级(Ijeoma等,2024; Uddin et al。,2018; Christodoulides; Christodoulides et al。,2024)。这种范式转移,同时推动清洁能源的普遍采用,同时向电力系统注入了更大的不确定性(Choi等,2021)。此外,热功率单元的逐渐退役使该系统的灵活性资源紧张(Lin等,2024; Chen,2023)。这在峰值剃须区域(PS)和频率调节(FR)的区域尤为明显,该系统面临前所未有的压力(Rosewater和Ferreira,2016年)。为了有效应对这一挑战,大规模的电池储能系统(BESS)已成为突出的重要技术,是一种枢纽技术,用于强化不断发展的电力基础设施的可靠性和安全性(Parag and Sovacool,2016; Liu等,2019)。在不同的成熟度水平之间,锂离子电池占主导地位,占全球部署的70%以上。LifePo4电池,特别是由于其高能量密度,稳定性和安全特征,在储能电站中广泛使用(Kim等,2015; Orikasa等,2013)。行业基准要求,对于220AH储能电池,在标准PS和FR操作期间,目前的速率不得超过0.5°C,以维护运营完整性(Panda等,2022)。尽管如此,关于此操作方案的缺乏特定分析。必须深入研究系统的实验研究,以剖析
积极的模式(例如步行和骑自行车)是一个很高的优先事项,是一种必不可少的,高度可持续的运输方式,也支持健康的生活方式。公共权利(PROW)作为与运输网络的关键联系起着重要作用。他们提供了获得基本服务的访问权限,提供了整合和改善高速公路项目中的行人网络和设施的机会,以促进步行,包括公交车和火车站。prow必须由步行者,骑自行车的人和马术者及时维护且易于使用。为了鼓励步行和骑自行车,理事会可以改进网络,以消除行人和骑自行车的人的障碍,并增强环境,以提供人们友好的街道,以优先考虑可持续的运输方式。应在任何道路计划的设计阶段确保优先,安全性和便利性,并应考虑所有用户。国家规划政策框架(NPPF)2024段的第96段在计划制定中具有更高的生活方式,其总体目的是实现健康,包容和安全的地方。国家规划政策框架(NPPF)2024段的第96段在计划制定中具有更高的生活方式,其总体目的是实现健康,包容和安全的地方。
摘要在理论上对大规模电磁场和等离子体之间的能量交换负责的基本过程在理论上是充分理解的,但实际上尚未对这些理论进行测试。这些过程在所有等离子体中都是无处不在的,尤其是在行星磁圈和其他磁性环境中高和低β等离子体之间的接口。尽管这种边界遍布等离子宇宙,但尚未完全识别导致储存磁和热等离子体能量的过程,并且每个过程的相对影响的重要性尚不清楚。尽管通过在磁重新连接中转换为磁到动能来理解能量释放方面,但过渡区域中拉伸和更松弛的田间线之间的极端压力如何平衡,并通过血浆和田地的绝对对流来释放并释放。必须测试最新的理论进步和大规模不稳定性的预测。本质上,负责的过程仍然很少理解,问题尚未解决。白皮书的目的提交了ESA的2050年航行电话,以及本文的内容是突出三个出色的开放科学问题,这些问题显然是国际兴趣的:(i)当地和全球等离子体物理学的相互作用:(ii)电子磁性对转换过程中电子磁性和质子质量能量之间的分配过程中的分配量和plasma Energy之间的分配量和(III II III和(III II II)和(III II)和(III)和(iii and conteres and corte and corte and conteres and(III II)。我们对当前最新的新测量和技术进步进行了讨论,以及这些国际高优先科学目标可以大大提高的几个候选任务概况。