可以缓解糖尿病(HBA1C <48mmol/mol,无需使用抗糖尿病药物3个月)可能无法确保恢复正常的血糖特征[空腹血糖水平<5.6 mmol/L和后丙糖(PP)血糖<7.8mmmol/L]。该研究调查了2型糖尿病缓解后患者中与OGTT清除相关的因素。在一年的在线建立生活方式修改计划中获得了缓解的四百名参与者,其中包括基于植物的饮食,体育锻炼,PSYCHOLical Support和Medical Management(在2021年1月至2022年6月之间),并出现在OGTT中。ogtt清除是通过空腹血糖<5.6 mmol/L和2小时的餐后血糖<7.8 mmol/l的75G葡萄糖溶液的结合。在400名参与者中,有207名(52%)的OGTT和175(44%)的葡萄糖耐受性(IGT)受损。较短的糖尿病持续时间(<5年)与OGTT清除率很明显(P <0.05)。降低葡萄糖药物的干预前使用与OGTT清除无关(p <0.1)。干预后,与IGT组相比,OGTT清除组的体重减轻(P <0.05)明显更高(P <0.05)和HBA1C的降低(P <0.05)。与IGT组相比,OGTT清除组的胰岛素抵抗和β细胞功能的改善也更高(P <0.05)。结论,清除OGTT是通过生活方式相互作用来缓解的人的可能性。未来的随机对照试验进行较长的随访可能有助于证实我们的发现。较高的体重减轻,糖尿病的持续时间较短,胰岛素抵抗的改善与缓解参与者的OGTT清除率显着相关。
和消除脱氢丙氨酸(DHA),46个蛋白N末端胺的转移,47,48和光诱导的色氨酸 - 选择性修饰肽和蛋白质49(见图考虑到这一点,我们期望极高的Quatternized n原子将充当一个羧基激活组,可以在有效的胺传输反应中用于快速,清洁和选择性赖氨酸膜片。实际上,Mukaiyama的试剂(2-apination吡啶肾)已通过2-酰基N-甲基吡啶丹中间体(50)广泛用于有机化学的鉴定和酯阳离子,50,为我们的支持构提供了坚实的基础。但是,直接应用Mukaiyama的试剂将无法获得化学选择性肽和蛋白质。51因此,重新介绍吡啶量激活的酯是一个机会,可以与优化的生物物理特性以及内源性蛋白质仿真的线粒体富集一起评估高度反应性方法。在这里,我们报告了使用阳离子吡啶激活酯的易感赖氨酸选择性蛋白质修饰(图1b)。可以容易制备酯,稳定稳定数月,并且具有较高的氨基反应性和70%的赖氨酸选择性标记。然后,我们对细胞中的活性赖氨酸进行了基于活性的蛋白pro(ABPP)。总共,我们在MCF-7细胞裂解液中的250种蛋白质中定量鉴定350个高反应性赖氨酸标记的肽。此外,我们还实现了248个蛋白质,其中包含活细胞中的386个修饰的赖氨酸残基,并由某些线粒体共定位成像所产生,这表明线粒体靶向是由于带正电荷的阳性酯。52因此,吡啶量激活的酯提供了一个有前途的工具箱,以进一步促进时空研究和遗传操作。
摘要。人们越来越多地讨论太阳辐射改造 (SRM) 作为一种降低全球和区域温度的潜在工具,以便为传统的碳减排措施的实施争取时间。然而,迄今为止的大多数模拟都假设 SRM 是气候变化工具箱的附加组件,而没有考虑减排和 SRM 之间的任何物理耦合。在本研究中,我们分析了这种耦合的一个方面:在 SRM 部署下,通过改变光伏 (PV) 和聚光太阳能 (CSP) 的生产潜力,可再生能源 (RE) 容量以及脱碳率可能会受到何种影响。评估使用了地球系统模型 CNRM-ESM2-1 针对基于情景的实验的模拟 1 小时输出。SRM 情景使用平流层气溶胶注入 (SAI) 将全球平均温度从高排放情景 SSP585 基线降低到中等排放情景 SSP245。我们发现,到本世纪末,与 SSP245 相比,SAI 条件下大多数地区每年经历的低光伏和 CSP 能量周数会增加。与 SSP585 相比,虽然 SAI 条件下低能量周数的增加在全球范围内仍然占主导地位,但某些地区可能会受益于 SAI 并经历更少的低光伏或 CSP 能量周数。与 SSP 情景相比,SAI 条件下电位的很大一部分下降被 SAI 条件下光学上层对流层云层较薄所抵消,这使得更多的辐射能够穿透到地面。北半球和南半球的中纬度地区光伏电位相对下降幅度最大。我们的研究表明,使用 SAI 将高端全球变暖降低到温和全球变暖可能会对利用太阳能可再生资源满足能源需求带来更大的挑战。
目的:深部脑刺激 (DBS) 导线周围的射频 (RF) 组织发热是 MRI 期间众所周知的安全风险,因此需要制定严格的成像指南并限制允许的方案。植入导线相对于 MRI 电场的轨迹和方向导致不同患者的 RF 发热程度存在差异。目前,没有针对植入 DBS 导线颅外部分的手术要求,这导致临床导线轨迹和 RF 发热存在很大差异。最近的研究表明,在颅外导线轨迹中加入同心环可以减少 RF 发热。然而,环的最佳定位和轨迹修改在 MRI 期间增加安全裕度方面的量化效益仍然未知。在本研究中,作者系统地评估了可在 3T MRI 期间最大限度减少 RF 发热的 DBS 导线轨迹的特征,以制定安全进行术后 MRI 的最佳手术实践,并且他们介绍了这些修改后轨迹的首次手术实施方式。方法作者进行了实验来评估 244 种不同导线轨迹的最大温升。他们研究了同心环的位置、数量和大小对颅骨的影响。实验是在植入商用 DBS 系统的拟人模型中进行的,通过应用高特定吸收率序列(B 1+rms = 2.7 µ T)产生射频暴露。作者进行了重测实验来评估测量的可靠性。此外,他们还评估了成像标志和 DBS 设备配置扰动对低加热轨迹功效的影响。最后,两名神经外科医生在患者体内植入了推荐的修改轨迹,作者通过与未修改轨迹的比较来表征他们的射频加热。结果 最高温度升高范围为 0.09 ° C 至 7.34 ° C。作者发现,增加环路数量并将其放置在更靠近手术钻孔的位置,特别是对于对侧导线,可以大大降低射频加热。这些轨迹修改在手术过程中很容易融入,并将射频加热降低了三倍。结论 通过手术修改 DBS 导线轨迹的颅外部分可以大大降低 3T MRI 期间的射频加热。作者的结果表明,在 DBS 导线植入过程中可以很容易地对导线配置进行简单的调整,例如在钻孔附近设置小的同心环,以提高 MRI 期间患者的安全性。
蛋白质的翻译后修饰(PTM)在其功能和可行性中起着至关重要的作用。这些修饰会影响蛋白质折叠,信号传导,蛋白质 - 蛋白质相互作用,酶活性,结合亲和力,聚集,降解等等。迄今为止,已经描述了超过400种PTM,代表了远远超出遗传编码氨基酸的化学多样性。这种修饰对蛋白质的成功设计构成了挑战,但也代表了使蛋白质工程工具箱多样化的主要机会。为此,我们首先训练了人工神经网络(ANN),以预测十八种最丰富的PTM,包括蛋白质糖基化,磷酸化,甲基化和脱氨酸。在第二步中,这些模型是在计算蛋白建模套件Rosetta中实现的,该模型允许与现有协议的灵活组合来建模修饰的位点并了解它们对蛋白质稳定性和功能的影响。最后,我们开发了一种新的设计协议,该协议可以最大化或最大程度地减少修改特定站点的预先指定的概率。我们发现,基于ANN预测和基于结构的设计的这种组合可以使现有和引入新颖PTM的修改。我们工作的潜在应用包括但并不包括对表位的聚糖掩盖,从而加强了通过phos-odylation加强蛋白质 - 蛋白质相互作用,还可以保护蛋白质免受脱氨基责任的影响。我们的作品为Rosetta的蛋白质工程工具箱添加了新颖的工具,该工具允许PTM的理性设计。这些应用对于设计新蛋白质治疗剂的设计尤其重要,在这种蛋白质疗法的设计中,PTM可以彻底改变蛋白质的治疗特性。
基于 Al/AlO x /Al 约瑟夫森结的超导量子比特是通用量子计算机物理实现最有希望的候选者之一。由于可扩展性和与最先进的纳米电子工艺的兼容性,人们可以在单个硅芯片上制造数百个量子比特。然而,由非晶电介质中的双层系统(包括隧道势垒 AlO x )引起的这些系统中的退相干是主要问题之一。我们报告了一种约瑟夫森结热退火工艺开发,用于结晶非晶势垒氧化物(AlO x )。获得了热退火参数对室温电阻的依赖关系。所开发的方法不仅可以将约瑟夫森结电阻提高 175%,还可以将其降低 60%,R n 的精度为 10%。最后,提出了关于隧道势垒结构修改的理论假设。建议的热退火方法可用于为广泛使用的固定频率 transmon 量子比特形成稳定且可重复的隧道屏障和可扩展的频率调整。
减少对化石原料的依赖将有助于实现一个更可持续的社会,如联合国可持续发展目标中所规定的12。1目前,用于合成聚合物的原料的90%,尤其是塑料,依赖于石油和天然气。2估计产生的石油的4 - 8%用于制造塑料。自1964年以来,塑料的生产增加了20倍,预计到2050年将几乎四倍。因此,为了满足对塑料和聚合物的需求,在减少石油和天然气的消耗的同时,必须开发合成这些材料的新方法。一种潜在的解决方案是将生物量用作聚合物生产的原料。纤维素是未来可持续聚合物原料的明确选择。它是最丰富的生物可生产和
。CC-BY-NC-ND 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2024 年 1 月 28 日发布了此版本。;https://doi.org/10.1101/2024.01.28.577628 doi:bioRxiv 预印本
RNA修饰通过在转录后水平上发挥影响分布特征和分子功能来调节细胞生物学的关键作用。在这些修饰中,N7-甲基鸟苷(M7G)是最普遍的一种。近年来,已大大关注M7G修饰的含义。这种修饰存在于不同的RNA分子中,包括转移RNA,Messenger RNA,核糖体RNA和其他非编码RNA。它的调节是通过一系列特定的甲基转移酶和M7G结合蛋白发生的。值得注意的是,M7G修饰与多种癌症类型的各种疾病有关。早期的研究阐明了在肿瘤微环境中免疫生物学调节的背景下M7G修饰的重要性。这项全面的综述最终在与免疫细胞浸润,涵盖T细胞,B细胞和各种先天免疫细胞的调节有关的发现的综合中达到顶峰,所有这些都由M7G修饰策划了。此外,M7G修饰及其调节蛋白之间的相互作用可以深刻影响多种辅助治疗剂的功效,从而有可能用作枢纽的生物标志物和治疗靶标,用于在多种癌症类型中组合进行组合。