屏幕打印电极(SPE)是广泛用于电化学传感器构造中的多功能工具,被认为是设计一次性电分析传感器的有效平台。他们提供了许多优势,包括快速和可靠的分析,高灵敏度,良好的选择性,易用性,微型化,均匀性,可移植性和成本效益。1出现了屏幕打印的概念,以满足对较小,负担得起的电化学设备的需求,从而使这些工具更容易访问和实用。屏幕打印技术通过葡萄糖生物传感器的开发获得了开创性的认可和商业成功。2在2000年代初期,基于SPE的设备的商业化在环境监测,食品安全和医疗保健等领域之间大大扩展。3的可负担性,可移植性和质量生产的易用性使SPE对包括药物和生物学分析在内的不同应用具有极大的吸引力。4个SPE已成功应用于现场检测各种矩阵的各种分析物,从而可以检测药物和其他生物分子。1 SPE的主要优点之一是它们的适应性:它们可以用作一次性,现成的电极或表面修饰以进行专业应用,使其适合于痕量测定生物分子。5,6 SPE技术的最新进步致力于通过整合纳米材料的创新表面修饰策略来提高性能。7修改用于提高灵敏度,提高选择性和总体稳定性的提高。8通常考虑两种主要方法:首先,通过结合聚合物,金属,复合物,酶和其他材料来改变印刷墨水组成,以开发新型的基于墨水的SPE;第二,修改
地尔硫卓主要由肝脏代谢,并通过肾脏和胆汁排泄。与任何长期服用的新药一样,应定期监测实验室参数。肾功能或肝功能不全的患者应谨慎使用地尔硫卓。在旨在产生毒性的亚急性和慢性狗和大鼠研究中,高剂量的地尔硫卓与肝损伤有关。在特殊的亚急性肝脏研究中,大鼠口服 125 mg/kg 及以上剂量的药物与肝脏组织学变化有关,停药后可逆。在狗中,20 mg/kg 的剂量也与肝脏变化有关;但是,继续服药可逆这些变化。
以及关于 ASF MLV 主要候选疫苗的同行评审出版物。 • 与 ASF 专家和监管部门领导进行调查和 4 次技术研讨会。 • 标准草案于 2023 年 9 月提交生物标准委员会 • 修订文本于 2024 年 1 月前发送给 WOAH 成员国征求反馈意见 • WOAH ASF 专家的意见、BSC 的进一步考虑(2024 年 2 月)和修订
“抽象空间” 2023。Chiara Passa 的 AR 和人工智能艺术作品。“抽象空间”通过整面墙的投影,将一个虚构的极简环境(我使用 Chat GPT API 创建)与真实空间重叠,而这个空间一旦被观众使用 AR-AI 应用程序修改,就会神秘、怪异或有时不完整地重新出现在我们周围。观众在这个新的不稳定空间中,通过观看由几何体积阴影构成的新 AI 空间,体验到一种缺失或空虚的感觉,这些阴影是根据缓冲过程沿光源方向挤压图元轮廓而创建的。还提供视频手册(屏幕 7')版本。视频预览:https://youtu.be/zzAaf7hxTYI Android 应用程序和相关矩阵可供下载。每个动画持续 6'.30''。 https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace2&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace3&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace4&hl=en
作者:N LAGOPATI · 2021 · 被引用 22 次 — 诊断、预防和治疗。二氧化钛纳米颗粒 (TiO2 NPs) 具有广泛的光催化抗菌和抗癌作用...
1. 香港中文大学(深圳)医学院第二附属医院及深圳市龙岗区人民医院,深圳 518172,中国。2. 香港中文大学医学院切哈诺沃精准再生医学研究所,深圳 518172,中国。3. 安徽医科大学基础医学院,合肥 230032,中国。4. 中国科学院自动化研究所分子影像重点实验室,北京 100190,中国。5. 内尔博士创新药物研发生物物理实验室,中药质量研究国家重点实验室。6. 中国科学技术大学基础医学院、生命科学与医学部免疫反应与免疫治疗重点实验室,合肥 7. 国家肾脏疾病重点实验室,北京 100853,中国
这些材料在激光中被广泛应用,包括作为激光器中的活性介质[3-5]、作为量子信息技术的纯单光子和纠缠光子对源[6]、以及作为新型纳米存储器件的构建块。[7-9] 特别是 InAs/InP 量子点,由于其与 1.55 μ m 的低损耗电信 C 波段兼容,目前作为单光子发射器非常有吸引力。[10,11] 金属有机气相外延 (MOVPE) 中的液滴外延 (DE) 是一种新近且非常有前途的 QD 制造方法,因为它结合了大规模外延技术和多功能外延方法。[12-15] 这是一种相对较新的工艺,其生长动力学尚未完全了解,特别是对于与电信波长兼容的 III-V 材料系统,例如 InAs/InP。因此,它在制造用于广泛应用的电信 QD 方面具有巨大的发展潜力。此外,使用 InP 作为基质材料可以实现 InAs 量子发射体的生长,而无需任何额外的变质缓冲剂(例如 AlInAs/GaAs)。[16 – 18]
系统Q ST0(KJ/mol)Q ST1(KJ/Mol)碳网络的IMA [5] 11.5 40.9 Ulberg和Gubbins [10] 4-12 30-40 Striolo等。[11] 6-14 50-60 Birkett and Do [17] 6.82-14.58 N/A N/A N guyen和Bhatia [18] 5-10 35-46表1:用于水面相互作用Q ST0和水 - 水 - 水 - 水面相互作用Q的等效热的吸附热量,在非官能化的Carbons上。
背景和目的:甲氨蝶呤(MTX)是一种广泛使用的抗癌药物,但其过度使用会导致显着的副作用。因此,为其确定设计简单和敏感的分析方法至关重要。实验方法:在这项工作中,基于离子液体(IL)/Ni-CO分层双氢氧化物纳米片(Ni-CO-LLDH)修饰的碳糊电极IL/Ni-CO-LDH/CPE制备电化学传感器。循环伏安法,差异脉冲伏安法和计时度测定法用于评估设计传感器的性能以进行MTX测定。关键结果:IL/Ni-CO-LDH/CPE传感器在线性动力学范围0.02至140.0 µm的差分脉冲伏安法和MTX浓度之间表现出线性关系,检测极限为0.006 µm。IL/Ni-CO-LDH/CPE传感器在实际样品上的回收测试中表现出1.7至3.7%之间的相对标准偏差值,表明该方法的精度。结论:具有成本效益和良好性能的设计传感器对于治疗药物监测和临床诊断可能很有价值。
人类小胶质细胞是必需的免疫细胞,可通过调查和协助清理周围环境来帮助调节中枢神经系统 (CNS) 的稳态微环境。在阿尔茨海默病 (AD) 中,患者的神经元周围 β-淀粉样斑块增多,这被认为是由小胶质细胞功能障碍引起的。AD 的遗传风险因素包括 APOE4 等位基因和 TREM2 变异,但原代细胞和组织的可用性有限限制了进行全面研究以更好地了解遗传影响的能力。在此,我们建议使用由 TREM2 修饰的 iPSC 系产生的人类诱导多能干细胞 (iPSC) 衍生的小胶质细胞作为小胶质细胞的现成来源,用于研究与神经退行性疾病相关的机制。