控制适应性免疫系统的免疫疗法已牢固确定,但是调节先天免疫系统的探索仍然少得多。纳米颗粒与吞噬细胞髓样细胞之间的内在相互作用使这些材料特别适合与先天免疫系统相关。但是,开发纳米疗法是一个精心制作的过程。在这里,我们展示了一种模块化方法,可有助于在纳米生物学平台中有效地纳入各种各样的药物。使用微流体配方策略,我们生产了基于载脂蛋白A1的纳米生物学,具有有利的先天免疫系统 - 通过体内筛选评估的特性。随后,雷帕霉素和三种小分子抑制剂被衍生物衍生化,以确保它们在纳米生物学中的无缝掺入和有效保留。在心脏移植小鼠模型中,静脉内给予雷帕霉素的纳米生物学(mTORI-NBS)的短期疗法显着延长了lograft的生存。最后,我们通过PET/MR成像研究了非人类灵长类动物的MTORI-NB生物分布,并评估了其安全性,为临床翻译铺平了道路。
控制适应性免疫系统的免疫疗法已牢固确立,但调节先天免疫系统的研究仍很少。纳米颗粒和吞噬性髓样细胞之间的内在相互作用使这些材料特别适合参与先天免疫系统。然而,开发纳米疗法是一个复杂的过程。在这里,我们展示了一种模块化方法,有助于将多种药物有效地整合到纳米生物平台中。使用微流体配方策略,我们生产了基于载脂蛋白 A1 的纳米生物制剂,经体内筛选评估,具有良好的先天免疫系统参与特性。随后,雷帕霉素和三种小分子抑制剂与亲脂性前体衍生化,确保它们在纳米生物制剂中的无缝结合和有效保留。在心脏移植小鼠模型中,短期静脉注射载雷帕霉素的纳米生物制剂 (mTORi-NB) 显着延长了同种异体移植的存活率。最后,我们通过 PET/MR 成像研究了 mTORi-NB 在非人类灵长类动物中的生物分布并评估了其安全性,为临床转化铺平了道路。
Twist Bioscience 文库制备和靶向富集检测是一种高度模块化的靶向富集下一代测序 (NGS) 试剂盒,具有从固定面板到全外显子组测序的各种应用。该试剂盒利用基因组 DNA (gDNA) 的片段化、连接和扩增来制备 NGS 文库,并利用基于珠子的杂交文库捕获来富集文库。Twist Bioscience 为用户提供了高度的灵活性,以满足实验室的需求,包括酶促或机械片段化、使用 Twist 全长组合双 (CD) 索引适配器或通用双索引 (UDI) 引物的两组不同的索引化学反应、单重或多重富集选项、用于文库富集的市售固定面板和定制面板选项,以及“标准”16 小时杂交选项或可运行 15 分钟至 4 小时的“快速”杂交选项。整个手动文库制备和靶向富集方案可以在最短一天或最多三天内完成。
2015 年 9 月,联合国大会通过了《2030 年可持续发展议程》[1],其中包含 17 项可持续发展目标 (SDG)。目标 7、9 和 13 分别题为“可负担的清洁能源”、“工业、创新和基础设施”和“气候行动”。2015 年 12 月,在巴黎举行的联合国气候变化框架公约 (UNFCCC) 缔约方大会 (COP) 第 21 届年会上,195 个国家达成了一项具有历史意义的、有史以来第一个具有法律约束力的全球气候协议,制定了一项行动计划,将全球变暖限制在 2°C 以下 [2]。为了实现这些目标,需要在全球范围内改变能源生产和消费方式。此外,需要广泛的低碳能源技术支持这一转变,包括各种可再生能源技术、能源效率措施、先进车辆、碳捕获和储存以及核能。《巴黎协定》为核电发展提供了激励,因为每个签署国都必须每五年更新一次其国家自主贡献。
2015 年 9 月,联合国大会通过了《2030 年可持续发展议程》[1],其中包含 17 项可持续发展目标 (SDG)。目标 7、9 和 13 分别题为:可负担的清洁能源;工业、创新和基础设施;以及气候行动。2015 年 12 月,在巴黎举行的联合国气候变化框架公约 (UNFCCC) 缔约方大会 (COP) 第 21 届年会上,195 个国家达成了一项历史性的、有史以来第一个具有法律约束力的全球气候协议,制定了一项行动计划,将全球变暖限制在 2°C 以下 [2]。为了实现这些目标,需要在全球范围内改变能源生产和消费方式。此外,需要广泛的低碳能源技术来支持这一转变,包括各种可再生能源技术、能源效率措施、先进车辆、碳捕获和储存以及核能。《巴黎协定》为核电发展提供了激励,因为每个签署国都必须每五年更新一次其国家自主贡献。
2015 年 9 月,联合国大会通过了《2030 年可持续发展议程》[1],其中包含 17 项可持续发展目标 (SDG)。目标 7、9 和 13 分别题为“可负担的清洁能源”、“工业、创新和基础设施”和“气候行动”。2015 年 12 月,在巴黎举行的联合国气候变化框架公约 (UNFCCC) 缔约方大会 (COP) 第 21 届年会上,195 个国家达成了一项具有历史意义的、有史以来第一个具有法律约束力的全球气候协议,制定了一项行动计划,将全球变暖限制在 2°C 以下 [2]。为了实现这些目标,需要在全球范围内改变能源生产和消费方式。此外,需要广泛的低碳能源技术支持这一转变,包括各种可再生能源技术、能源效率措施、先进车辆、碳捕获和储存以及核能。《巴黎协定》为核电发展提供了激励,因为每个签署国都必须每五年更新一次其国家自主贡献。
摘要 —由于各种模块化电力电子转换器的可扩展性和灵活性,集成分体式储能组件(如电池和超级电容器)是可行且有吸引力的。本文研究了在交流-直流转换应用中使用储能集成模块化转换器的不同交流/直流故障恢复方案的运行和经济特性。基于储能系统 (ESS) 和交流和/或直流系统之间的拓扑特征,提出了四种基于储能的模块化转换器部署方案。通过案例研究,使用时域仿真验证了极端交流/直流故障条件下的运行性能,包括故障隔离和功率补偿。评估了系统损耗,并阐述了详细的设计考虑因素、主要组件使用情况和估计的资本成本。对这四种方案进行了比较并提出了选择指南。一般来说,对于这种交流-直流转换应用,具有独立 ESS 的方案由于其高度的运行灵活性而更可取。
• QUICKIE Iris 的“空间旋转”技术是通过摇杆系统实现的,而不是传统的单枢轴倾斜。这意味着用户的重心始终位于椅子的中心,因此无论倾斜程度如何,底座都是稳定且易于操纵的。摇杆系统还允许更平稳的倾斜机制,这意味着与通常不稳定且不受控制的单枢轴倾斜相比,它不太可能引起用户的认知或音调反应。
摘要本文介绍了超高辐射模块化乘数的算法 - 硬件共同设计,用于高吞吐量模块化乘法。首先,为了加快模块化乘法的速度,我们使用一种新型的分段还原方法来利用超高的radix插入模块化乘法算法,从而减少了迭代和预计的数量。然后,为了进一步改善模块化乘法的吞吐量,我们设计了高度并行的模块化乘数体系结构。最后,我们使用Xilinx virtex-7 FPGA进行了并验证模块化乘数。实验结果表明,它可以在0.56 µs中执行256位模块化乘法,吞吐量速率高达4999.7 Mbps。关键字:模块化乘法,高吞吐量,超高radix分类:集成电路(内存,逻辑,模拟,RF,传感器)
摘要。人们推测临界性是神经网络动力学的一个组成部分。在临界阈值下运行需要精确的参数调整,而相应的机制仍是一个悬而未决的问题。最近的研究表明,在大脑网络中观察到的拓扑特征会产生 Griffiths 阶段,从而导致大脑活动动力学中的幂律和临界性在扩展参数区域中的运行优势。受不同意识状态的神经相关性证据越来越多的启发,我们研究了拓扑变化如何影响 Griffiths 阶段的表达。我们使用易感-感染-易感传播模型分析了模块网络中的活动衰减,发现我们可以通过改变模块内和模块间连接来控制 Griffiths 阶段的扩展。我们发现,通过调整系统参数,我们可以抵消临界行为的变化,并在网络拓扑发生变化的情况下保持稳定的临界区域。我们的研究结果揭示了结构网络属性如何影响 Griffiths 阶段的出现,以及其特征如何与已建立的拓扑网络指标相关联。我们讨论了这些发现如何有助于理解功能性脑网络的观察变化。最后,我们指出了我们的研究结果如何有助于研究疾病传播。