此预印本版的版权持有人于2025年1月15日发布。 https://doi.org/10.1101/2025.01.13.632809 doi:biorxiv Preprint
。CC-BY 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年1月13日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.01.13.632695 doi:Biorxiv Preprint
生物膜是不对称结构,其不对称性是由于双层小叶中脂质身份的差异以及膜上脂质和小分子的不均匀分布而产生的。蛋白质还可以根据其形状,序列和与脂质的相互作用来诱导和调节膜不对称。由于天然膜系统的复杂性以及在体外产生相关的不对称双层系统而难以理解,膜不对称如何影响大分子行为。在这里,我们提出了一种方法,该方法利用了跨膜β-桶外膜蛋白OPMA的有效,单向折叠,以创建具有已知方向的蛋白质诱导的蛋白诱导的偶极子(由已知方向的蛋白诱导的偶极子)(由序列变异引起的序列变异,该序列变异构成了OMPA回路)。然后,我们将不同的OMPA变体的折叠动力学和稳定性表征为这些蛋白质脂质体。我们发现,折叠OMPA的主要序列和折叠发生的膜的偶极子都在调节折叠速率的情况下起着重要作用。至关重要的是,我们发现,通过将折叠蛋白上的电荷与膜偶极子互补匹配,可以增强折叠动力学和折叠OMPA的稳定性。结果暗示,细胞如何利用膜包裹的蛋白质中环电荷来操纵膜环境以进行适应和存活。
鼻内施用的脱铁胺(DFO)有望成为神经退行性疾病和神经系统损伤的新型治疗方法。鼻内(IN)递送允许DFO等药物绕过血液 - 脑障碍,并在几分钟之内沿嗅觉和三叉神经沿嗅觉和三叉神经在细胞外传递(Thorne等,2004; Chen等,1998; Frey,1997; Thorne等,1995; Thorne等,1995)。鼻内递送具有最大程度地减少全身性暴露的额外好处,从而减少副作用以及无创的。脱铁胺是一种经认可的通用抗氧化剂和抗炎药,其结合铁具有很高的亲和力,但与系统给药的大脑渗透有限(Di Paola等,2022)。游离铁在阿尔茨海默氏病(AD),帕金森氏病和其他脑部疾病的个体的大脑中异常积累(Rao等,2022)。在患有AD的人的大脑中,也含有铁的自由血红素,也增加了血红素和铁灭活的人脑脑毒蕈碱毒蕈碱乙酰胆碱受体,需要体外记忆(Venters等,1997; Atamna and Frey,frey,2004; Fawcett等,2004; Fawcett等,2002; Fawcett et al。,2002)。鼻内DFO已显示在动物中,以治疗各种脑部疾病,其中铁会异常积累,甚至可以改善正常和健康小鼠的记忆力(Fine等,2020)。这是重新利用现有药物来治疗PD,AD,中风和其他脑部疾病的一个例子,通过使用非侵入性递送以绕过血脑 - 脑 - 障碍物,并靶向大脑。对DFO作为对神经退行性疾病的潜在治疗的兴趣,鉴于最近认识到,基于不受管制的铁水平的一种调节细胞死亡形式,依赖于神经退行性疾病和神经侮辱的形式(Stockwell,2022222)。 促进铁水平响应的铁凋亡会导致脂质过氧化,活性氧(ROS)产生,线粒体功能障碍以及神经炎性反应导致细胞和神经元损伤(Tang等,2020; Jarrahi等; Jarrahi等; Jarrahi等,2020年)。对DFO作为对神经退行性疾病的潜在治疗的兴趣,鉴于最近认识到,基于不受管制的铁水平的一种调节细胞死亡形式,依赖于神经退行性疾病和神经侮辱的形式(Stockwell,2022222)。促进铁水平响应的铁凋亡会导致脂质过氧化,活性氧(ROS)产生,线粒体功能障碍以及神经炎性反应导致细胞和神经元损伤(Tang等,2020; Jarrahi等; Jarrahi等; Jarrahi等,2020年)。
量子密钥分发 (QKD) 允许两个用户之间以无条件的安全性进行密钥交换。要广泛部署 QKD,低成本和紧凑性是高性能的关键要求。目前,大多数 QKD 系统都依赖于体强度和相位调制器来生成具有精确定义的幅度和相对相位差的光脉冲 - 即将信息编码为信号状态和诱饵状态。然而,这些调制器价格昂贵且体积庞大,从而限制了 QKD 系统的紧凑性。在这里,我们提出并通过实验演示了一种新颖的光发射器设计,通过以 GHz 时钟速度生成强度和相位可调的脉冲来克服这一缺点。我们的设计通过采用直接调制激光器结合光注入锁定和相干干涉,消除了对体调制器的需求。因此,该方案非常适合小型化和光子集成,我们实施了原理验证 QKD 演示以突出潜在应用。
©2023作者。除非另有说明, 在成瘾中发表的期刊文章的这一版本可通过谢菲尔德大学研究出版物和版权政策提供,根据创意共享归因4.0国际许可(CC-BY 4.0)的条款,该条款允许在任何媒介中使用无限制的用途,提供原始作品,提供原始工作,提供原始工作,提供原始工作。 要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/在成瘾中发表的期刊文章的这一版本可通过谢菲尔德大学研究出版物和版权政策提供,根据创意共享归因4.0国际许可(CC-BY 4.0)的条款,该条款允许在任何媒介中使用无限制的用途,提供原始作品,提供原始工作,提供原始工作,提供原始工作。 要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/在成瘾中发表的期刊文章的这一版本可通过谢菲尔德大学研究出版物和版权政策提供,根据创意共享归因4.0国际许可(CC-BY 4.0)的条款,该条款允许在任何媒介中使用无限制的用途,提供原始作品,提供原始工作,提供原始工作,提供原始工作。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 1 月 10 日发布。;https://doi.org/10.1101/2025.01.06.631520 doi:bioRxiv preprint
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月7日。 https://doi.org/10.1101/2022.10.07.511265 doi:Biorxiv Preprint
此预印本版的版权持有人于2024年12月25日发布。 https://doi.org/10.1101/2023.02.13.527949 doi:Biorxiv Preprint
ryanodine受体(RYRS)是负责从肌质和内质网释放的细胞内四聚离子通道。在三种已知的哺乳动物RYR同工型中,RYR1对于肌肉收缩至关重要,并且已被广泛研究。RYRS的细胞质暴露多域碎片整合了多个细胞信号,这些信号调节通道门控和与Ryrs生理开放概率的小偏差导致危及生命的疾病。冷冻EM在揭示RYR门控机制的近原子细节方面发挥了作用,但在冷冻EM条件下RYR1的开放概率明显低于电生理研究中观察到的,这使RYR1门控模型的结构研究变得复杂。在这里,我们提出了一项冷冻EM研究,研究了在脂质浓度不同的CHAP中溶解的RyR1的开放概率。我们发现,将脂质浓度从0.001%增加到0.05%,将RYR1开放概率从16升至84%。但是,RYR1重组为脂质纳米盘仍关闭。我们在以最高脂质浓度重建的地图中建模了72个脂质分子。这些发现表明,脂质在冷冻EM条件下调节RYR1门控的关键作用,并提出了RYRR1门控调制的结构研究的最佳脂质模拟物。