甲醛 (FA) 是一种普遍存在的环境污染物,国际癌症研究机构将其列为 I 类人类致癌物。此前,我们报道过,甲醛会在接触的工人中诱发血液毒性和染色体非整倍性,并在实验动物的骨髓和造血干细胞中产生毒性。利用酵母中的功能性毒理基因组学分析,我们确定了调节真核 FA 细胞毒性的基因和细胞过程。虽然我们在酵母中验证了其中一些发现,但 FA 在人类细胞中的许多特定基因、通路和作用机制尚不清楚。在当前的研究中,我们应用了全基因组、功能丧失的 CRISPR 筛选来识别人类造血 K562 细胞系中 FA 毒性的调节剂。我们评估了 40、100 和 150 μM FA(分别为 IC10、IC20 和 IC60)的细胞易感性和抗性的遗传决定因素
大多数精神障碍,如成瘾性疾病或精神分裂症,都以认知功能和行为控制受损为特征,而这些障碍源于前额叶神经网络的紊乱。这些疾病往往具有慢性复发性,且缺乏有效的治疗方法,因此必须开发新的治疗策略。脑机接口配备了多种传感和刺激能力,提供了一种新的工具箱,但其在精神障碍诊断和治疗方面的适用性尚未得到探索。因此,本研究旨在开发一种生物相容性和多模态神经假体,以测量和调节神经精神症状的前额叶神经生理特征。我们使用 3D 打印技术,通过机器人控制软硅胶和导电铂墨水的沉积,快速制作定制生物电子植入物的原型。我们将该装置植入大鼠的内侧前额叶皮层上方的硬膜外,在未接受治疗的动物中,在酒精注射、通过植入物驱动的脑电刺激和抗复发药物纳曲酮的皮质输送进行神经调节后,获得了听觉事件相关脑电位。为了实现智能神经假体接口,我们还开发了机器学习算法,以自主分类神经记录中的治疗效果。神经假体成功捕捉了反映完整刺激处理和酒精引起的神经抑制的神经活动模式。此外,植入物驱动的电刺激和药物刺激能够成功增强神经活动。基于逐步线性判别分析的机器学习方法能够处理数据稀疏性并以高精度区分治疗。我们的工作证明了多模态生物电子系统监测、调节和识别健康和受影响的大脑状态的可行性,并可能用于个性化和优化的神经精神疾病治疗。
谷物宽度和重量2(GW2)是一种E3-泛素连接酶编码基因,对谷物物种中谷物的大小和重量负调节。因此,建议禁用GW2基因活性以提高作物生产率。我们在这里表明,大麦GW2.1同源物的CRISPR/CAS介导的诱变会导致细长谷物的发展和蛋白质含量增加。同时,GW2.1功能的损失引起了由于尖峰数量减少和谷物设置低而引起的明显晶粒屈服不足。我们还表明,GW2.1缺乏作物产量和蛋白质含量引起的相反作用在很大程度上与培养条件无关。这些发现表明大麦GW2.1基因对于产量和晶粒性状之间的优化是必需的。总的来说,我们的数据表明,大麦中GW2.1基因活性的丧失与多效性效应相关,对生成器官的发展以及因此谷物产生产生了负面影响。我们的发现有助于更好地理解谷物的发育以及GW2.1控制大麦的定量和定性遗传改善中控制的UTI。
最初发表于:Monteagudo,María;卡尔西纳,布鲁纳;萨拉查-伊达尔戈,米尔顿 E;马丁内斯-蒙特斯,安吉尔 M;皮内罗-亚涅兹,埃琳娜;卡莱拉斯,爱德华多;马丁,玛丽亚卡门;罗德里格斯-佩拉莱斯,桑德拉;拉脱维亚语,Rocio;吉尔,爱德华多;巴菲特,亚历山大;伯尼雄,耐莉费尔南德斯-桑罗曼,安吉尔;迪亚兹-塔拉韦拉,阿尔贝托;梅利德,萨拉;在,酯类; Reglero,Clara;马丁内斯-布里奇,娜塔莉亚;打鼾者,乔凡娜;德尔奥尔莫,玛丽亚·伊莎贝尔;科拉莱斯,佩德罗·何塞·派恩斯;奥利维拉,克里斯蒂娜·拉马斯;阿尔瓦雷斯-埃斯科拉,克里斯蒂娜;古铁雷斯,玛丽亚·卡拉塔尤德;洛佩兹-费尔南德斯,阿德里亚;加西亚,努里亚·帕拉西奥斯;雷戈霍(Rita Maria)迪亚兹,路易斯·罗伯斯;劳尔登(Nuria Romero)瓜达拉马,奥斯卡·桑斯;博伊施莱因,菲利克斯; Nölting,Svenja(2024)。 MAML3 融合调节血管和免疫肿瘤微环境并导致嗜铬细胞瘤和副神经节瘤的高转移风险。最佳实践研究:临床内分泌代谢,38(6):101931。 DOI:https://doi.org/10.1016/j.beem.2024.101931
摘要 肺癌仍然是全球癌症死亡的主要原因,其中非小细胞肺癌 (NSCLC) 占大多数。免疫检查点抑制剂 (CPI),包括针对程序性细胞死亡蛋白 1 及其配体 (PD-1/PD-L1) 的抑制剂,已经彻底改变了各种癌症的治疗格局。值得注意的是,基于 PD-1/PD-L1 抑制剂的方案现在已成为转移性 NSCLC 的标准一线疗法,大大提高了患者的总体生存率。尽管使用基于 CPI 的疗法在晚期 NSCLC 中取得了进展,但大多数患者在最初的反应后由于耐药性而出现病情进展。鉴于目前 NSCLC 二线及以上治疗方案的治疗选择有限,需要新的治疗方法来提高这些患者的长期生存率。因此,CPI 耐药性是癌症治疗中的一个新兴概念,也是临床研究的一个活跃领域。CPI 耐药性的关键机制之一是免疫抑制肿瘤微环境 (TME)。有效的 CPI 疗法基于转移针对癌细胞的免疫反应,因此,操纵免疫抑制性 TME 是抵抗 CPI 耐药性的重要策略。TME 的几个方面可能导致 NSCLC 的治疗耐药性,包括通过激活 Tyro3、Axl、MerTK (TAM) 受体,这些受体是免疫稳态的重要多效调节剂。它们的作用包括负面调节免疫反应,因此在癌症背景下 TAM 受体的异位表达可能导致免疫抑制性、促肿瘤性 TME。此外,TAM 受体是同时靶向 TME 中的肿瘤细胞和免疫细胞的重要候选药物。TAM 受体抑制剂 (TAM RI) 的临床开发越来越关注其挽救抗肿瘤免疫反应的能力,从而将免疫抑制性 TME 转变为免疫刺激性 TME。将 TAM RI 与 CPI 相结合以克服耐药性并改善 NSCLC 的长期临床反应具有很强的生物学原理。 TAM RI 与 CPI 的联合临床试验正在进行中,初步结果令人鼓舞。本综述概述了 CPI 耐药性的关键机制,包括免疫抑制 TME 的作用,并讨论了靶向 TAM 受体作为克服 NSCLC 中 CPI 耐药性的新颖、有希望的治疗策略的理由。
引言骨肉瘤 (OS) 是儿童和青少年中最常见且转移性最高的原发性骨肿瘤 (1)。尽管存在广泛的基因组畸变,但 OS 并没有特征性的 DNA 易位或可靶向的突变 (2)。因此,目前尚无针对 OS 的有效分子靶向疗法。然而,许多 OS 患者存在基因定义的体细胞 DNA 拷贝数改变,例如 8q24 染色体增加,约 20% 的 OS 患者有此表现 (3, 4)。8q24 基因座含有已知的致癌基因 c-MYC (MYC),它直接调节几种对不同细胞功能很重要的蛋白质编码和非编码基因,包括细胞周期调控、蛋白质生物合成、代谢、信号转导、转录和翻译 (5, 6)。已发现 MYC 在超过一半的人类癌症中失调 (7)。 8q24 区域扩增和 MYC 过度表达见于高级别癌前病变和侵袭性肿瘤,并且与不同人类肿瘤类型(包括 OS)的不良预后有关 (8–12)。除了对内在肿瘤细胞生物学的影响之外,MYC 的过度活化还会导致多种癌症的肿瘤免疫微环境 (TME) 发生改变 (13–15)。巨噬细胞是实体瘤(包括 OS)TME 中大量存在的细胞,通过释放独特的生长因子、细胞因子、趋化因子和酶 (16, 17),在宿主防御、组织修复、凋亡和组织稳态中发挥多功能作用。在成年人中,巨噬细胞在细胞因子巨噬细胞集落刺激因子 1 (M-CSF 或 CSF1) 的帮助下从外周血单核细胞分化。 CSF1 不仅调节单核细胞向巨噬细胞的分化,还通过与其受体 (CSF1R) 相互作用支持单核细胞/巨噬细胞的存活和增殖以及巨噬细胞的运动 (18)。肿瘤内致癌 MYC 在巨噬细胞调节中的作用已被证实。
关于通过阳极经颅直流电刺激 (tDCS) 调节左背外侧前额叶皮层 (前额叶 tDCS) 的走神倾向的能力,存在相互矛盾的证据。在这里,20 名参与者在 MRI 扫描仪中接受了 20 分钟的主动和假性前额叶 tDCS,分两次进行 (平衡)。在每次治疗中,他们完成两次持续注意力反应任务 (tDCS 之前和期间),其中包括记录走神主观反应的探针。我们通过动态功能网络连接 (dFNC) 和对默认模式、显着性和执行控制网络区域的动态因果建模分析,评估了 tDCS 对行为反应以及功能和有效动态的影响。行为结果提供了大量证据,支持 tDCS 对任务表现和走神倾向没有影响。同样,我们发现 tDCS 对潜在大脑状态的频率(频率)或停留时间(花费的时间)以及有效连接没有影响。总体而言,我们的结果表明前额叶 tDCS 无法调节走神倾向或影响潜在大脑功能。这扩大了之前行为复制失败的结论,表明前额叶 tDCS 可能不会导致自我生成认知过程中大脑活动的细微变化(即在行为阈值以下)。
摘要:尽管人们已经通过利用被动靶向或配体介导靶向来寻求抗癌药物的选择性肿瘤递送,但选择性抗癌疗法仍然是未得到满足的医疗需求。尽管纳米药物取得了进展,但诸如聚合物-药物偶联物之类的纳米系统仍然未能达到临床疗效的目标。在这项研究中,我们证明了聚合物-药物偶联物需要彻底的化学设计和正确的靶向剂/聚合物比率才能对癌细胞具有选择性和有效性。特别是,研究了两种携带紫杉醇并以不同叶酸 (FA)/PEG 比率(一种或三种)为靶点的 PEG 偶联物。在阳性 (HT-29) 和阴性 (HCT-15) FA 受体 (FR) 细胞系中的细胞毒性研究表明,具有一种或三种 FA 的偶联物在 HT-29 细胞中的活性分别高出 4 倍或 28 倍。 3-FA 结合物对细胞周期停滞的强烈影响证实了其较高的活性。此外,FA 靶向对 HT-29 细胞的迁移和侵袭性有明显影响,这两种结合物都显著降低了细胞的迁移和侵袭性。有趣的是,3-FA 结合物在小鼠体内也显示出了改善的药代动力学特征。这项研究的结果表明,需要进行彻底的研究来优化和调整药物输送,并实现对癌细胞所需的选择性和活性。
Presenilin(PSEN)基因中的突变是早期发作家族性阿尔茨海默氏病(FAD)的最常见原因。在细胞培养,体外生化系统和敲除小鼠中的研究表明,PSEN突变是功能丧失突变,损害了γ-泌尿酶活性。小鼠遗传分析强调了presenilin(PS)在学习和记忆,突触可塑性和神经递质释放以及神经元存活中的重要性,而果蝇研究进一步证明了PS在老化过程中PS在神经元存活中的进化作用。然而,在神经元存活中与PS相互作用的分子途径尚不清楚。为了调节PS依赖性神经元存活的遗传修饰符,我们开发了一种新的果蝇PSN模型,该模型表现出年龄依赖性神经变性和凋亡的增加。经过生物信息学分析,我们使用PSN KD模型中的两个独立的RNAi系在神经元中的每个基因的选择性敲低(KD)测试了排名最高的候选基因。有趣的是,在脂质转运和代谢中,增强PSN KD蝇中神经退行性的9个基因中有4个。具体而言,LPR1和LPR2的神经元特异性KD急剧恶化了PSN KD蝇中的神经退行性,LPR1或LPR2的过表达不会减轻PSN KD KD诱导的神经变性。此外,仅LPR1或LPR2 KD也会导致神经退行性,凋亡增加,攀爬缺陷和寿命缩短。这些发现表明,LPRS调节了依赖PSN的神经元存活,对于衰老大脑的神经元完整性至关重要。最后,LPR1和LPR2的杂合缺失或LPR1或LPR2的纯合缺失类似导致PSN KD Flies中的年龄依赖性神经变性,并进一步加剧神经变性。
摘要:天然氨基醇是针对神经退行性疾病的有前途的药物,例如阿尔茨海默氏症和帕金森氏病,以及一种相关的保护机制,是通过与生物膜结合和置换型或结合抑制淀粉样蛋白蛋白及其细胞毒素氧化氧化氧化氧化氧化氧化物的结合而发生的。我们比较了三种化学上不同的氨基酚,发现它们表现出不同的(i)结合亲和力,(ii)电荷中和(iii)机械增强剂,以及(iv)重新溶解的脂质体膜内的关键脂质再分布。它们在保护培养的细胞膜侵害淀粉样蛋白β低聚物中也具有不同的效力(EC 50)。全球拟合分析导致了一个分析方程,该方程式描述了氨基氨醇的保护作用,其浓度和相关膜作用的函数。分析将氨基氨基蛋白介导的保护与明确定义的化学部分相关联,包括诱导部分膜中和效应的多胺组(79±7%)和类似胆碱的尾巴,从而导致脂质重新分布和双层机械抗性(21±7%)(21±7%),并将其量化效果链接到它们的化学效果。■简介
