摘要:光谱计算机断层扫描标志着医学成像的革命性进步,提供了组织表征和诊断准确性的显着改善。使用双能X射线技术,该方法根据其原子数和电子密度区分材料。频谱成像可从多个能级中获取数据,从而更详细地描绘组织结构,并增强对各种病理状况的识别和理解。与传统成像不同的是依赖于单个能级的传统成像,该方法产生的图像具有多样的对比度,从而可以区分标准扫描中可能看起来相似的组织。本评论探讨了有关光谱计算机断层扫描的发表研究和研究的各种集合,利用了同行评审的期刊和学术教科书,专门研究双能量成像系统,探测器创新和临床应用。获得了所获得的见解,以提供有关此成像技术的基本原理,技术进步和临床实用性的全面概述。强大的搜索策略和明确定义的纳入标准可确保选择高质量的相关资源,以支持本综述中得出的结论。本文旨在对光谱计算机断层扫描的基本原理,技术创新和临床应用进行全面概述。这种能力对于检测和分析各种病理问题(包括肿瘤,血管异常和退化性疾病)特别有价值。2。检测器技术的最新进步显着提高了光谱成像系统的灵敏度和分辨率。这些改进会导致更清晰,更精确的图像,并减少噪声。高级图像重建算法的结合具有进一步的图像质量,从而更好地可视化复杂的解剖学特征,对于准确的诊断和有效的治疗计划至关重要。此外,增强的软件功能现在可以详细介绍组织特性的定量分析,例如衰减系数,有助于评估组织组成并区分良性和恶性生长。光谱计算机断层扫描中的进步代表了医学成像中的关键演变,从而显着提高了诊断评估的准确性和细节。利用双能系统和创新技术,可以实现先进的组织表征,促进知情的临床决策。其广泛的临床应用突出了其在各种专业中的重要性,从而提高了有效诊断和管理各种疾病的能力。随着研究和技术的继续发展,它将在实现更好的健康成果中发挥越来越重要的作用。关键字:计算机断层扫描,光谱成像,组织表征,双能X射线系统1。引言自从五十年前作为一种非侵入性诊断方法首次亮相以来,计算机断层扫描(CT)经历了重大发展。现代CT研究的关键领域是光谱成像,它利用多色X射线的能量信息来增强组织表征。虽然Spectral CT源于早期CT技术,但由于技术的改进,其临床采用率在过去的十年中已大大增长,这使其实际上更可行(Krauss,B。,2015年)。ct数是由X射线的衰减确定的,X射线受材料的质量密度和有效原子数的影响。光谱CT使用数学技术分别计算质量密度和有效原子数,从而收集多个能级的数据。双能计算机断层扫描(DECT)的出现具有显着高级的CT技术,可以解决组织表征的先前局限性,而新的光子计数检测系统为多能成像的进一步改善提供了潜力(Gutjahr,R。,R。,2016年)。本文的目的是对光谱计算机断层扫描的核心原理,技术进步和临床应用进行深入探索。方法本综述研究了一系列关于光谱计算机断层扫描的已发表的研究和研究,这些研究来自同行评审的期刊和学术教科书,这些期刊和学术教科书着眼于双能CT系统,探测器技术,
方法:组装了255名被诊断为晚期G/ GEJ腺癌的成年患者的数据集。将影响整体生存(OS)至显着程度的IRAE识别为候选变量,并将其整合为候选变量,以及其他12个候选变量。These included gender, age, Eastern cooperative oncology group performance status (ECOG PS) score, tumor stage, human epidermal growth factor receptor 2 (HER2) expression status, presence of peritoneal and liver metastases, year and line of anti-PD-1 treatment, neutrophil-to-lymphocyte ratio (NLR), controlling nutritional status (CONUT) score, and Charlson comorbidity index (CCI)。为了减轻与伊拉斯有关的时机偏见,采用了具有里程碑意义的分析。使用最小绝对收缩和选择算子(LASSO)回归进行了变量选择以查明明显的预测因子,并应用了方差障碍因子来解决多重共线性。随后,使用正向似然比方法进行了COX回归分析来开发生存预测模型,排除未能满足比例危害(PH)假设的变量。该模型是使用整个数据集开发的,然后通过Bootstrap重新采样进行内部验证,并通过另一家医院的同类进行外部验证。此外,创建了一个列图来描述预测模型。
1 印度韦洛尔基督教医学院干细胞研究中心(班加罗尔 inStem 的一个单位);2 印度特里凡得琅 Sree Chitra Tirunal 医学科学与技术研究所;3 美国伯克利加州大学伯克利分校创新基因组学研究所;4 美国旧金山格拉德斯通研究所数据科学与生物技术研究所;5 澳大利亚悉尼新南威尔士大学生物技术与生物分子科学学院;6 印度卡纳塔克邦马尼帕尔高等教育学院;7 印度韦洛尔基督教医学院暨医院血液学系;8 日本茨城县理化学研究所生物资源中心细胞工程部;9 日本红十字会中央血液研究所血液服务总部研究与开发部,日本东京;10 印度韦洛尔基督教医学院生物化学系; 11 加州大学洛杉矶分校微生物学、免疫学和分子遗传学系,美国洛杉矶;12 瑞士苏黎世生物系分子健康科学研究所
与经典电子不同,量子态以难以测量而著称。从某种意义上说,电子的自旋只能处于两种状态之一,即向上或向下。通过简单的实验可以发现电子处于哪种状态,对同一电子的进一步测量将始终证实这一答案。然而,这幅图景的简单性掩盖了电子复杂而完整的本质,电子总是处于两种状态之一,而状态会根据测量方式而变化。量子态断层扫描是一种使用许多相同粒子的集合来完全表征任何量子系统(包括电子自旋)的过程。多种类型的测量可以从不同的特征基重建量子态,就像经典断层扫描可以通过从不同的物理方向扫描三维物体来对其进行成像一样。在任何单一基础上进行额外的测量都会使该维度更加清晰。本文主要分为两部分:层析成像理论(第一部分和第二部分)和光子系统的实验层析成像
层析成像是分析内部成分排列的一种方法。医学可能是利用这种方法并推动其发展的最著名学科。[1–3] 然而,层析成像也已应用于其他研究领域,如材料科学[4,5]、生物学[6]、考古学[7]甚至流体动力学[8],并且在工业领域也越来越受到认可,例如用于质量控制[9]或无损检测[10]。图像采集与实时重建算法[11]、高级图像分析[12]、特征分割和识别分析算法[13,14]与现代机器学习工具[15,16]的结合增强了这种方法的潜力。如今,实验室扫描仪普及且功能强大,受益于改进的空间和时间分辨率,尽管尖端实验仍然局限于高亮度同步加速器和X射线自由电子激光器。可以在极短的时间内获得高空间分辨率。[17,18] 对高空间和时间分辨率、大视野和高总记录时间的需求意味着目标的冲突。文献中概述了不同设备可用的实际速度和分辨率。[19–21]
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
Pegcetacoplan与NICE的PEGCETACOPLAN技术评估指南(TA778)一致。pegcetacoplan是每周两次通过皮下输注给药的C3抑制剂。临床专家指出,切换到Pegcetacoplan时通常会有良好的反应,但是有些残留贫血的人可能无法切换,因为这是一种自我管理的治疗方法。iptacopan是一种可以控制血管内和血管外抽血的近端补体抑制剂,是每天两次口服治疗。该公司将IPTACOPAN定位为血液溶质性贫血成人PNH的一线治疗选择,并将其作为C5抑制剂治疗后患有残留贫血的成年人的PNH的二线治疗选择。委员会同意临床专家认为Ravulizumab是首选的C5抑制剂。因此,它得出的结论是,拉库鲁津单抗和佩格曲霉是最相关的比较器。
心血管疾病(CVD)负责低收入和中等收入国家的过早死亡。早期的CVD检测和干预在这些人群中至关重要,但是许多现有的CVD风险评分需要进行体格检查或实验室测量,这在此类卫生系统中可能具有挑战性。在这里,我们调查了使用光摄影学(PPG)的潜力,这是一种在大多数智能手机上可用的传感技术,可以潜在地以低成本启用大规模筛查,以进行CVD风险预测。我们开发了一个基于PPG的CVD风险评分(DLS),以预测十岁内发生重大不良心血管事件(MACE:非致命性心肌梗死,中风和心血管死亡)的可能性,仅鉴于年龄,性别,性别,吸烟状态和PPG作为预测者,只有年龄,性别,性别,性别,性别,性别,性别,性别,性别,性别,性别,性别。我们将DLS与基于办公室的Refit Who-Who分数进行了比较,该分数采用了WHO和Globorisk分数(年龄,性别,吸烟状况,身高,体重和收缩压)的共享预测指标,但在UK Biobank(UKB)同胞上进行了改装。在UKB队列中,DLS的C统计效果(71.1%,95%CI 69.9-72.4)与基于办公室的Refit-Who得分(70.9%,95%CI 69.7-72.2;非内野利率2.5%,p <0.01)。DLS的校准令人满意,平均绝对校准误差为1.8%。在基于办公室的分数中添加DLS功能将C统计量提高了1.0%(95%CI 0.6-1.4)。dls预测,十年的MACE风险与基于办公室的Refit-Who得分相当。它提供了概念验证,并提出了基于PPG的方法在资源有限地区基于社区的初级预防的潜力。
结果:该研究总共招募了1622例T2DM患者。其中,有390例DKD。这三组中DKD的患病率为16.6%,24.2%和31.3%。差异在统计学上是显着的(p = 0.000)。There were signi fi cant differences in age (P=0.033), T2DM duration (P=0.005), systolic blood pressure (SBP) (P=0.003), glycosylated hemoglobin (HbA1c) (P=0.000), FPG (P=0.032), 2-hour postprandial plasma glucose (2h-PPG) (P=0.000),禁食C肽FCP(P = 0.000),2小时的餐后C肽(2H-CP)(P = 0.000)(P = 0.000),总胆固醇(TC)(P = 0.003)(P = 0.003),低密度脂蛋白胆固醇(LDL-C)(LDL-C)(P = 0.000),血清crectinine(P = 0.001) (p = 0.000)在三组中。Mantel-haenszel卡方检验表明,HGI和DKD之间存在线性关系(x2 = 177.469,p <0.001)。Pearson相关分析表明,随着HGI水平的增加,DKD的患病率正在增加(r = 0.445,p = 0.000)。通过单变量逻辑回归分析表明,与L-HGI相比,H-HGI中的个体更可能开发DKD(OR:2.283,95%CI:1.708〜3.052)。已调整为多个因素,这种趋势仍然保持显着(OR:2.660,95%CI:1.935〜3.657)。合并的