摘要:农作物的水状态直接受土壤水的供应影响。因此,本研究旨在分析不同土壤水分含量(80、90、100、100、110、110、110、110和120%的现场容量-FC)和受精系统(常规和施肥)的玉米中的水关系(双跨混合AG 1051)。该实验是在2019年8月至2019年10月至10月的巴西雷夫市,在巴西佩尔南布科州雷·佩恩市的农村乡村农村乡村的农业工程系中进行的实验。实验设计是具有5×2阶乘方案的随机块,四个重复和40个实验单元。在土壤湿度水平以下低于田间容量(100%FC)的100%,增加了玉米植物的相对水分含量,叶片,叶水的潜力和渗透调节。与常规施肥相比,施肥会导致较高的蒸腾率和以95%的田间容量(95%FC)灌溉的农作物中的水效率提高。在提交土壤水分水平以下的植物中,受精系统会影响水,渗透和压力潜力,以及渗透调节。
摘要:青贮是保存高水分牧草的有效技术之一。然而,豆科植物青贮的成功很大程度上取决于附生微生物菌群、缓冲能力和青贮牧草的水溶性碳水化合物含量。在本研究中,三种选定的乳酸菌 (LAB) 菌株被用作饲料豌豆 (Pisum sativum L.) 的微生物添加剂(10 6 CFU/g 鲜物质)。这些菌株包括双酶乳杆菌 (LS-65-2-2) 和植物乳杆菌 (LS-72-2),均从土耳其的牧场分离出来,还有枯草芽孢杆菌,它已经用于这些目的。目的是评估这些菌株对微生物组成和所得青贮饲料质量的影响。在 5 个时间点(第 0、2、5、7 和 45 天)进行青贮饲料开饲,重复 3 次。接种乳酸菌的效果在统计学上存在差异(P < 0.001)。研究结果显示,测试参数的值如下:pH(4.52–4.86)、乳酸菌(5.51–8.46 log 10 CFU/g 青贮饲料)、肠道细菌(2.24–3.61 log 10 CFU/g 青贮饲料)、酵母菌(6.20–7.03 log 10 CFU/g 青贮饲料)、中性洗涤纤维(38.85–41.93%)、酸性洗涤纤维(ADF,32.91–35.75%)和相对饲料价值(RFV,135.90–151.73)。与对照组相比,接种乳酸菌导致饲料豌豆青贮饲料的 pH 值显著下降,干物质 (DM) 回收率增加(P < 0.001)。青贮饲料中乳酸菌的丰度显著增加(P < 0.001),而接种青贮饲料中肠道细菌含量(P < 0.001)、pH、NH 3 -N(P < 0.01)和ADF(P < 0.05)降低。接种乳酸菌后,RFV 显著提高。总体而言,与枯草芽孢杆菌相比,添加乳酸菌可以改善发酵过程和青贮饲料质量,同时提高干物质回收率并降低青贮饲料 pH 值。
摘要:农作物的水状态直接受土壤水的供应影响。因此,本研究旨在分析不同土壤水分含量(80、90、100、100、110、110、110、110和120%的现场容量-FC)和受精系统(常规和施肥)的玉米中的水关系(双跨混合AG 1051)。该实验是在2019年8月至2019年10月至10月的巴西雷夫市,在巴西佩尔南布科州雷·佩恩市的农村乡村农村乡村的农业工程系中进行的实验。实验设计是具有5×2阶乘方案的随机块,四个重复和40个实验单元。在土壤湿度水平以下低于田间容量(100%FC)的100%,增加了玉米植物的相对水分含量,叶片,叶水的潜力和渗透调节。与常规施肥相比,施肥会导致较高的蒸腾率和以95%的田间容量(95%FC)灌溉的农作物中的水效率提高。在提交土壤水分水平以下的植物中,受精系统会影响水,渗透和压力潜力,以及渗透调节。
植物和微生物释放介导根际宿主 - 微生物相互作用并调节植物对环境应激的适应性的代谢产物。然而,根际代谢产物 - 微生物组动力学及其功能和生物学意义的机制在很大程度上尚不清楚。我们的研究表明,某些类型的根际代谢产物对非生物应激源表现出反应,并且与根际微生物群落和植物表型的变化有关。我们建议,一组缺乏的根际化合物可以充当基石代谢物,从而影响根际微生物组的组成,并可能调节植物代谢,以响应养分可用性。这些发现证明了利用植物 - 代谢产物 - 微生物相互作用的巨大潜力,以优化根际微生物组功能,促进植物和生态系统健康,并为土壤微生物组研究提供广泛的途径。
随着气候变化继续影响环境,干旱管理在农业食品生产中变得更加至关重要。农民现在正在寻找易于应用的替代干旱管理方法。从这个意义上讲,在本研究中,提出了超吸收性聚合物(SAP)作为替代性土壤调节和干旱管理工具。在土壤调节和植物生长促进方面,通过不同的土壤类型和极端的干旱条件来测试开发的SAP的效率,至少有4个重复进行了长期的土壤和温室实验。使用小麦作为模型植物,通过4种不同的生长指标来监测植物的生长。植物生长指标表明,在不同的干旱条件下,使用不同量的SAP,使用不同量的SAP提高了干物质,尖峰长度和谷物产量,最多可提高24%,而11.6%的植物产量提高了11.6%。这项研究阐明了超吸收聚合物在农业中使用的和示例性的研究,并在剂量调整和理解这些类型的聚合物中的干旱剂量关系中有用。
适当的土壤管理可以维持和改善整个生态系统的健康。适当的土壤管理需要对其特性进行适当的表征,包括土壤有机质 (SOM) 和土壤水分含量 (SMC)。与传统方法相比,基于图像的土壤表征显示出强大的潜力。本研究比较了 22 种不同的监督回归和机器学习算法的性能,包括支持向量机 (SVM)、高斯过程回归 (GPR) 模型、树集合和人工神经网络 (ANN),在实验室环境下用数码相机拍摄的土壤图像中预测 SOM 和 SMC。共提取了 22 个图像参数,并分两步用作模型中的预测变量。首先使用所有 22 个提取的特征开发模型,然后使用 SOM 和 SMC 的六个最佳特征子集。饱和度指数(红色指数)是 SOM 预测的最重要变量,对比度(中位数 S)是 SMC 预测的最重要变量。颜色和纹理参数与 SOM 和 SMC 都表现出高度相关性。结果显示,对于使用六个预测变量的验证数据集,图像参数与实验室测量的 SOM(使用立体派的 R 2 和均方根误差 (RMSE) 分别为 0.74 和 9.80%)和 SMC(使用随机森林的 R 2 和 RMSE 分别为 0.86 和 8.79%)之间存在令人满意的一致性。总体而言,GPR 模型和树模型(立体派、RF 和增强树)最能捕捉和解释本研究中 SOM、SMC 和图像参数之间的非线性关系。
环氧树脂模塑料 (EMC) 用于保护集成电路 (IC) 免受环境影响,其中之一就是水分侵入,从而导致腐蚀。为了获得所需的热性能和机械性能,EMC 需要大量 (二氧化硅) 填料,从而引入大量界面。虽然硅烷偶联剂可以促进良好的粘合,但它们已证明会引入界面体积,从而在玻璃纤维填充的环氧树脂中表现出环氧树脂和 SiO 2 之间更快的水分传输。在这项工作中,我们研究了 EMC 中的填料颗粒是否也引入了这种界面体积,以及它是否会影响复合材料的水分扩散系数。我们将动态蒸汽吸附 (DVS) 进行的水分吸收测量与有效介质理论的预测进行比较,以及基于我们的样品的微 CT 扫描的数值模拟,用于包含不同填料水平的模型环氧树脂系统和具有两种不同填料水平的商业 EMC 样品。从测量的 DVS 数据中,我们观察到有效扩散系数高于 EMC 和模型系统不存在任何界面时的预测值。这表明应该存在一个界面层。