免责声明:DNA 遗传分子工作表是在 StudyBlaze AI 的帮助下生成的。请注意,AI 可能会出错。如果您不确定您的解决方案或认为可能有错误,请咨询您的老师。或者直接联系 StudyBlaze 团队,邮箱地址为 max@studyblaze.io。
背景:RGT-075是一种用于治疗2型糖尿病(T2DM)的临床发育中的小分子GLP-1受体激动剂(GLP1RA)。从健康成年人中的1阶段RGT-075单级剂量研究的结果是,在12-C类临床治疗剂/新技术(基于Incretin的疗法)中,海报编号为724-P。1此处,我们介绍了1阶段的结果,即随机,双盲,安慰剂对照的,多重固定剂量的住院治疗研究(基线HBA1C 6-10.5%),伴随二甲双胍≥500mg/d)。RGT-075或匹配的安慰剂(每个队列的6个活性/2个安慰剂)使用自适应研究设计最多28天,该设计允许剂量和滴定调整,并调整同类群之间(见图1)。评估包括安全性(主要),PK(次要)和探索性功效变量,包括HBA1C中基线的变化,禁食血浆葡萄糖(FPG),范围内连续的葡萄糖监测时间(CGM-TIR),体重(BW)(BW)和混合耐受性测试(MMTT)生物剂。结果:总共36例患者(56%f/44%m;平均年龄为55yf/61ym)被招募为4个队列。[起始剂量]→[滴定持续时间]→[靶剂量]通过队列变化如下:队列1 [60 mg] [无滴定] [60 mg];队列2 [30 mg] [9 d] [120 mg];队列3 [15 mg] [20 d] [180 mg];队列4 [15 mg] [14d] [45 mg]。安全:大多数受试者报告了治疗出现的不良事件(TEAE)(100%C1 + C2; 88%C3; 83%C4; 83%C4; 78%合并安慰剂),并且发病率下降,起始剂量较低,滴定持续时间增加。PK:随着剂量水平的增加,RGT-075血浆暴露量增加。MMTT结果提出。茶叶主要与胃肠道相关,严重程度轻度;没有严重的AE或死亡报告; 3个受试者因茶而停产。探索功效:基线HBA1C变化很大(7.2-9.0%); HBA1C的平均基线变化从基线到28天的变化范围为-0.6至-1.2%,而RGT -075治疗的变化为-0.37%,而安慰剂为-0.37%。FPG,CGM-TIR与基线的变化与HBA1C结果相关。bw的平均基线变化范围为-2.3范围为-4.5 kg,而RGT -075治疗的平均变化为-1.1 kg,安慰剂为-1.1 kg。结论:用QD口服RGT-075 GLP1RA(15-180 mg/天)的处理长达28天,显示出与GLP1RA肽类别的安全性,尽管基线变异性很高,但仍具有GLP1RA肽类和有希望的探索性结果趋势。随着剂量水平的增加, RGT-075血浆暴露量增加。 这些结果支持第2阶段临床发展的进步。RGT-075血浆暴露量增加。这些结果支持第2阶段临床发展的进步。
本次会议将是在阿斯彭物理中心(ACP)举行的有关单分子生物物理学(SMB)的第12个双年展研讨会,该研讨会是在2001年成功的系列上建立的。SMB会议重点介绍了单分子生物物理学领域的最新进展,包括其实验和理论前沿。主题每年有所不同。过去的会议中涵盖的生物系统包括基于核酸的酶(聚合酶,拓扑异构酶,解旋酶等。),核酸(DNA,RNA),机械酶(肌球蛋白,动力蛋白,动力蛋白,ATP合酶,鞭毛运动)以及分子生理学(折叠/展开,结合,信号传导和其他生物结构变化)的方面。精选的实验技术包括高级荧光,光学镊子,磁性镊子,扫描的探针技术,纳米孔,冷冻电子显微镜和超分辨率技术。这个研讨会传统上吸引了实验者,计算科学家和理论家的混合。
以市场为中心的商业模式 我们正在开发当前和未来的细分市场,目标是实现长期高于平均水平的市场增长和盈利能力。增长主要由我们的战略细分市场推动,通过投资于选定的专业领域、战略并购和集中的市场定位。可持续性是我们增长战略和活动的核心。这包括探索商业机会以创建未来的重点细分市场。我们战略的一个关键部分是成为客户和其他业务合作伙伴的宝贵合作伙伴,为他们提供广泛的应用知识。Perstorp 对他们改进流程、更贴近客户以及实现财务和可持续发展目标至关重要。在未来几年里,我们将加强对如何改善客户购买过程中重要接触点的互动的关注,并相应地加强 Perstorp 品牌体验。
单生物分子电子感测技术在许多领域非常重要,从医学诊断到疾病监测。由于可以将单个生物分子的生理变化转换为可测量的电信号,因此单分子电子生物传感器可以实时实时,高度敏感和高带宽检测单个单个内部或分子间相互作用。这些强大的单分子传感设备在精确提供沿反应途径的稀有和详细的中间信息方面证明了关键优势,并揭示了集合测量中隐藏的独特特性。本综述总结了单分子电子生物传感器的显着进步,强调了单分子水平的生物分子识别,相互作用和反应动力学。传感器的配置,传感机制和代表性应用。此外,还提供了使用光电集成系统来同步感应单个生物分子的电信号和光学信号的观点。
肥胖治疗对急性前临床白血病患者有效,体现了针对多种致癌调节成分的治疗的重要性。然而,最近的研究表明,急性髓样白血病(AML)的突变复杂性排除了分子靶向转化为临床成功的转化。在这里,作为基因分析的组合,我们使用了公正的,联合性的体外药物筛查来识别驱动AML并开发出良性的组合治疗的途径。首先,我们在原代AML细胞上筛选了513个自然量,并确定了一种新型的二萜(H4),该二萜(H4)优先诱导FLT3野生型AML的分化,而FLT3-ITD/突变赋予了抗性。对H4响应的样品显示出髓样标记的表达增加,核质质比的明显降低以及单核细胞转录程序重新激活的潜力减少了体内白血病的传播。通过使用H4和具有定义靶标的分子组合筛选,我们证明H4通过激活蛋白激酶C(PKC)信号通路的激活诱导分化,并激活PKC磷酸化和PKC到细胞膜的PKC磷酸化和易位。此外,组合筛选确定了溴和末端结构域(BET)抑制剂,该抑制剂可以进一步改善H4依赖性的白细胞分化在FLT3野生型单核细胞AML中。这些发现说明了用于开发AML组合治疗方法的公正,多重筛选平台的价值。
在药物发现中,产生与靶蛋白结合的分子,同时提出所需的化学特性是一个基本挑战。在分子产生的深度学习的早期阶段,大多数模型并未明确模拟产生的分子与靶蛋白之间的相互作用。相反,它们将分子作为微笑字符串或图形产生,仅通过对接得分考虑靶蛋白。这种方法面临概括的局限性,并要求对不同目标进行模型的重新训练。相比之下,新型的袖珍3D分子生成方法通过从蛋白结合口袋输入产生3D分子结构来取得重大改进。例如,Atom-AutoreReReTresbility模型Pocket2mol在创建具有较高结合和理想化学特性的分子方面表现出卓越的性能。但是,它具有局限性,包括产生不切实际的立体化学结构和对产生分子的证券的约束,后者源于训练以复制训练集中的分子。为了克服这些局限性,我们提出了一种加强学习方法,以微调模型以生成具有增强特性的分子。为了证明其有效性,我们进行了一个实验,在该实验中,我们使用方法最大程度地减少了模型的立体化学问题,并增强了产生的分子的吸毒和结合亲和力。可以在https://github.com/deargen/pocket2mol rl公共场所找到推理和复制说明的源代码。我们的结果表明,这种方法不仅可以解决Pocket2mol的现有问题,而且还为分子产生指标建立了新的基准,从而强调了我们方法的推进分子产生的潜力。
一个体的体细胞本质上具有相同的基因组,但每种细胞类型由与每个基因的调控区域结合的转录因子 (TF) 组合决定,从而控制 DNA 转录成 RNA。对 TF 的研究有两种方式:一种是自下而上,另一种是自上而下。自下而上的方法从分子水平开始,包括原子分辨率结构和蛋白质-DNA 复合物的单分子成像。“自上而下”的方法从整个生物体或整个细胞水平开始,包括经典的遗传学研究和分子生物学。理解功能基因组学需要采用整体方法来结合分子、细胞和组织水平的 TF 研究。在这里,我们报告了一种技术,它允许在单分子和单细胞基础上进行全基因组 TF 结合研究。