注意:本文的先前版本以“青少年人力资本生产中的生产力与动机:来自结构动机现场实验的证据”为标题发布。我们感谢 James Heckman 和四位匿名审稿人的反馈,这些反馈大大改进了本文。Greg Sun、Nicholas Buchholz、Barton Hamilton、Stephen Ryan、Ismael Mourifié、Caroline Hoxby、Chris Taber、Jeffrey Smith、Samuel Purdy、Mary Mooney、Felix Tintelnot、Aloysius Siow、Angela Duckworth、Joseph L Mullins、Martin Luccioni 和 Rob Clark 也提供了有关本文内容或阐述的特别有用的对话。宾夕法尼亚大学、芝加哥大学、威斯康星大学麦迪逊分校、华盛顿大学圣路易斯分校、皇后大学、多伦多大学、NBER 夏季教育会议以及其他几场会议和研讨会的研讨会参与者提供了有用的反馈和建议。如果没有一支才华横溢、敬业、精力充沛、不知疲倦的研究人员团队,这个项目不可能实现,其中包括:Debbie Blair、Edie Dobrez、Matthew Epps、Janaya Gripper、Clark Halliday、Allanah Hoefler、Justin Holz、Kristen Jones、No'am Keesom、Tova Levin、Claire Mackevicius、Wendy Pitcock、Joseph Seidel、Kristen Troutman、Andrew “Rusty” Simon 和 Diana Smith。最后,我们要感谢一大批研究助理,包括 Marvin Espinoza、Bonnie Fan、John Faughnan、Yuan Fei、Ian Fillmore、Greta Gol、Justin Guo、Colton Korgel、Hunter Korgel、Ethan Kudrow、Helen Li、Victor Ma、Claire Mackevicius、Janae Meaders、Mateo Portune、Denis Semisalov、Yaxi Wang、De'Andre Warren、Colleen White 和 Colin Yu,他们对我们执行复杂的实验计划至关重要。我们非常感谢我们三个合作学区的匿名学校管理人员和教师,他们慷慨地付出了额外的努力来参与这项研究。我们也对与 Ariadne Merchant、Daphne Hickman、Morgan Hickman、Lydia Scholle-Cotton 和 Nicholas Merchant 的广泛讨论表示感谢。本文表达的观点均为作者的观点,并不一定反映美国国家经济研究局的观点。
C. Shan Xu 1 、Michal Januszewski 2 、Zhiyuan Lu 1,3 、Shin-ya Takemura 1 、Kenneth J. Hayworth 1 、Gary Huang 1 、Kazunori Shinomiya 1 、Jeremy Maitin-Shepard 2 、David Ackerman 1 、Stuart Berg 1 、Tim Blakely 2 、John Bogovic 1 、Jody Clements 1 、Tom Dolafi 1 、Philip Hubbard 1 、Dagmar Kainmueller 1,4 、William Katz 1 、Takashi Kawase 1 、Khaled A. Khairy 1,5 、Laramie Leavitt 2 、Peter H. Li 2 、Larry Lindsey 2 、Nicole Neubarth 6 、Donald J. Olbris 1 、Hideo Otsuna 1 、Eric T. Troutman 1、Lowell Umayam 1、Ting Zhao 1、Masayoshi Ito 1,7、Jens Goldammer 1,8、Tanya Wolffi 1、Robert Svirskas 1、Philipp Schlegel 9、Erika R. Neace 1、Christopher J. Knecht, Jr. 1、Chelsea X. Alvarado 1、Dennis A. Bailey 1、Samantha Ballinger 1、Jolanta A Borycz 3、Brandon S. Canino 1、Natasha Cheatham 1、Michael Cook 1、Marisa Dreher 1、Octave Duclos 1、Bryon Eubanks 1、Kelli Fairbanks 1、Samantha Finley 1、Nora Forknall 1、Audrey Francis 1、Gary Patrick Hopkins 1、Emily M. Joyce 1 、SungJin Kim 1、Nicole A. Kirk 1、Julie Kovalyak 1、Shirley A. Lauchie 1、Alanna Lohffi 1、Charli Maldonado 1、Emily A. Manley 1、Sari McLin 3、Caroline Mooney 1、Miatta Ndama 1、Omotara Ogundeyi 1、Nneoma Okeoma 1、Christopher Ordish 1、Nicholas Padilla 1、Christopher Patrick 1、Tyler Paterson 1、Elliott E. Phillips 1、Emily M. Phillips 1、Neha Rampally 1、Caitlin Ribeiro 1、Madelaine K Robertson 3、Jon Thomson Rymer 1、Sean M. Ryan 1、Megan Sammons 1、Anne K. Scott 1、Ashley L. Scott 1、Aya Shinomiya 1、Claire Smith 1、Kelsey Smith 1、Natalie L. Smith 1、Margaret A. Sobeski 1、Alia Suleiman 1、Jackie Swift 1、Satoko Takemura 1、Iris Talebi 1、Dorota Tarnogorska 3、Emily Tenshaw 1、Temour Tokhi 1、John J. Walsh 1、Tansy Yang 1、Jane Anne Horne 1,3、Feng Li 1、Ruchi Parekh 1、Patricia K. Rivlin 1、Vivek Jayaraman 1、Kei Ito 1,7,8、Stephan Saalfeld 1、Reed George 1、Ian Meinertzhagen 1,3、Gerald M. Rubin 1、Harald F. Hess 1、Louis K. Scheffer 1,* 、Viren Jain 2 和 Stephen M. Plaza 1
27. Yang, J.,2022. 一种用于定量预测干湿状态下最大高度变化的聚合物刷理论,预印本,https://arxiv.org/abs/2208.06892 26. Yang, X.、Steck, J.、Yang, J.、Wang, Y. 和 Suo, Z.,2021. 可降解塑料易开裂。工程,7(5),第 624-629 页。 25. Chu, CK、Joseph, AJ、Limjoco, MD、Yang, J.、Bose, S.、Thapa, LS、Langer, R. 和 Anderson, DG,2020. 可扩展透明质酸网络纤维的化学调谐。美国化学会志,142(46),第 19715-19721 页。 24. Yang, J. 、Illeperuma, W. 和 Suo, Z.,2020 年。非弹性增加了水凝胶出现褶皱的临界应变。Extreme Mechanics Letters,第 100966 页。 23. Yang, J. 、Steck, J. 和 Suo, Z.,2020 年。海藻酸盐链通过共价键的凝胶化动力学。Extreme Mechanics Letters,第 100898 页。 22. Yang, J. 、Steck, J.、Bai, R. 和 Suo, Z.,2020 年。拓扑粘附 II。可拉伸粘附。Extreme Mechanics Letters,第 100891 页。 21. Steck, J.、Kim, J.、Yang, J. 、Hassan, S. 和 Suo, Z.,2020 年。拓扑粘附。I。快速且强大的拓扑粘合剂。 Extreme Mechanics Letters,第 100803 页。20. Mu, R.、Yang, J.、Wang, Y.、Wang, Z.、Chen, P.、Sheng, H. 和 Suo, Z.,2020 年。聚合物填充大孔水凝胶可降低摩擦力。Extreme Mechanics Letters,第 100742 页。19. Yang, J.、Bai, R.、Li, J.、Yang, C.、Yao, X.、Liu, Q.、Vlassak, JJ、Mooney, DJ 和 Suo, Z.,2019 年。设计用于干湿粘附的分子拓扑结构。ACS Applied Materials & Interfaces,11(27),第 24802-24811 页。 18. Yang, J. 、Bai, R.、Chen, B. 和 Suo, Z.,2019 年。水凝胶粘附:化学、拓扑和力学的超分子协同作用。Advanced Functional Materials,第 1901693 页。17. Yang, J. 、Jin, L.、Hutchinson, JW 和 Suo, Z.,2019 年。塑性延缓了折痕的形成。固体力学和物理学杂志,123,第 305-314 页。16. Yang, X.#、Yang, J.#、Chen, L. 和 Suo, Z.,2019 年。橡胶网络中的水解裂纹。Extreme Mechanics Letters,第 100531 页。
Louis K. Scheffer 1* , C. Shan Xu 1 , Michal Januszewski 2 , Zhiyuan Lu 1,3 , Shin-ya 1 Takemura 1 , Kenneth J. Hayworth 1 , Gary B. Huang 1 , Kazunori Shinomiya 1 , Jeremy 4 Maitin-Shepard 2 , Stuart Berg 1 , Jody Clements. 1, Philip Hubbard 1, William Katz 1, 5 Lowell Umayam 1, Ting Zhao 1, David Ackerman 1, Tim Blakely 2, John Bogovic 1, Tom 6 Dolafi 1, Dagmar Kainmueller 1¶, Takashi Kawase 1, Khaled A. Khairy 1**, Laramie 7 Leavitt , Peter H. Li 2 , Larry Lindsey 2 , Nicole Neubarth 1†† , Donald J. Olbris 1 , Hideo 8 Otsuna 1 , Eric T. Trautman 1 , Masayoshi Ito 1,4 , Jens Goldammer 1,5 , Tanya Wolff 1 , 9 Robert Svirskas 1 , Philipp Schlegel 9 , Erika R Neace 1 , Christopher J. Knecht, Jr. . 1 , 10 chelsea x. alvarado 1 , Dennis A. Bailey 1 , Samantha Ballinger 1 , Jolanta Borycz 3 , 11 Brandon S. Caninino 1 , Natasha Cheatham 1 , Bry 1 Kelli fairbanks 1 , saantha finley 1 , Nora Forknall 1 , 13 Audrey Francis 1 , Gary Patrick Hopkins 1 , Emily M. Joyce 1 , Sungjin Kim 1 , Nicole A. 1 , Charli Maldonado 1 , 15 Emily A. Manley 1 , Sari mclin 3 , Caroline Morone 1 , Miatta ndama 1 1 1 , Omotara 16 Ogundeyi 1 , nneoma christoph Ler Paterson 1 , Elliott E. Phillips 1 , Emily M. Phillips 1 , neha 18 Rambally 1 , Caitlin Ribeiro 1 , Madelaine k Robertson 3 , Jon Thomson rymer 1 , sean 19 M. Sc. , Shinomya 1 , 20 Claire Smith 1 , Ketsey Smith 1 , Natalie L. Smith 1 , Margaret A. Sobeski 1 , alia 21 Suleiman 1 , Jackie Sweft Mour Tokhi 1 , John J. Walsh 1 , tansy yang 1 , Jane Anne Horne 3 , 23 Feng Li 1 , Ruchi Parekh 1 , Patricia K. Rivlin 1 , Vek Jayaraman 1 , kei itto 1,4,5 1,3 , Gerald M. Rubin 1 , Harald F. 25 Hess 1 , Viren Jain 2 , Stephen M. Plaza 1
Petersburg Catholic Community of St. Patrick—Tampa Christ the King Parish—Tampa Diocese of Orlando Diocese of Pensacola—Tallahassee Holy Family Catholic School—Orlando Our Lady of Divine Providence Parish/School—Miami Our Lady of Holy Rosary Parish/ School—Miami
确定州处方药可负担委员会 (PDAB) 的上限支付限额考虑因素 2024 年 2 月 27 日 Matthew J. Martin,文学硕士;Benjamin N. Rome,医学博士,公共卫生硕士;Helen Mooney,公共卫生硕士;Leah Z. Rand,哲学博士;Adam JN Raymakers,博士;Liam Bendicksen,文学士;Catherine S. Hwang,医学博士,公共卫生硕士;Hussain S. Lalani,医学博士,公共卫生硕士,理学硕士;Ian TT Liu,医学博士,法学博士,公共卫生硕士,理学硕士;Jerry Avorn,医学博士;Aaron S. Kesselheim,医学博士,法学博士,公共卫生硕士 本白皮书是与国家州卫生政策学院 (NASHP) 合作编写的,并得到 Arnold Ventures 的支持,旨在协助各州实施处方药可负担委员会。本文中表达的建议仅供参考,不构成官方法律指导。执行摘要 一些州正致力于通过建立处方药可负担性委员会 (PDAB) 来解决高处方药价格问题。这些委员会的主要任务是评估在该州销售的选定药品的可负担性。对于州消费者或州医疗保健系统无法负担的药品,一些 PDAB 有权设置支付上限 (UPL),从而确定该药品在该州的购买最高价格。各州可以通过多种方式计算和选择适当的 UPL 值。不同的方法可能或多或少有用,具体取决于某种药物被视为无法负担的原因。本白皮书介绍了 PDAB 可能采用的三种潜在策略,以利用可负担性审查流程中的见解和数据来得出 UPL。这些策略介绍如下:策略 1:参考定价。如果支付的药品价格高于类似药品或其他情况下的相同药品的价格,PDAB 可能会考虑使用参考定价策略设定 UPL。这可以通过内部将药品价格参考治疗替代品的价格,或外部参考其他国家的药品价格或 Medicare 或退伍军人事务部等公共付款人协商的价格来实现。策略 2:净价。对于给患者带来大量自付费用的高度回扣药品,PDAB 可考虑将 UPL 与药品制造商和 PBM 之间协商的任何回扣或折扣后的药品净价挂钩。这种方法可确保患者自付费用基于净价,但委员会需要考虑这种方法对处方集放置的影响。策略 3:预算阈值。对于临床有效但由于州和私人付款人大量支出而带来负担能力挑战的药品,一些 PDAB 可考虑在制定 UPL 时检查药品的预算影响。这可以通过限制药品对健康保险费增加的贡献或利用修改后的预算影响分析来设定成本节约目标来实现。
1. Erana-Perez Z、Igartua M、Santos-Vizcaino E*、Hernandez RM* (AC) 。差异蛋白质和 mRNA 货物装载到工程化大细胞外囊泡和小细胞外囊泡中揭示了体外和体内试验中的差异。J Control Release 379: 951 (2025) 影响因子:11.467,Q1。2. Las Heras K、Garcia-Orue I、Aguirre JJ、de la Caba K、Guerrero P、Igartua、Edorta Santos-Vizcaino M*、Hernandez RM* (AC) 。载有来自毛囊或脂肪组织的人类间充质基质细胞的大豆蛋白/β-几丁质海绵状支架可促进糖尿病慢性伤口愈合。Biomater Adv 155: 213682 (2023)。影响因子:7.9,第一季度。3. Las Heras K、Royo F、Garcia-Villacrosa C、Igartua M、Santos-Vizcaino、Falcon-Perez JM*、Hernandez RM* (AC)。毛囊来源的间充质基质细胞的细胞外囊泡:分离、表征和治疗慢性伤口愈合的潜力。干细胞研究与治疗 13:147 (2022)。影响因子:5.985,第一季度。4. Gonzalez-Pujana A、Vining KH、Zhang DKY、Santos-Vizcaino E、Igartua M、Hernandez RM (AC)、Mooney DJ (AC)。多功能仿生水凝胶系统可增强间充质基质细胞的免疫调节潜力。生物材料。257:120266 (2020)。如果:10.307,Q1。 5. 拉斯赫拉斯 K、桑托斯-比斯卡诺 E、加里多 T、古铁雷斯 FJ、阿吉雷 JJ、德拉卡巴 K、格雷罗 P、伊加图亚 M、埃尔南德斯 RM(AC)。大豆蛋白和甲壳质海绵状支架:从天然副产品到生物医学应用的细胞输送系统。绿色化学,22:3445-3460(2020)。如果:10.182,Q1。 6. 冈萨雷斯-普亚纳 A、桑托斯-维兹卡伊诺 E、加西亚-埃尔南多 M、埃尔纳兹-埃斯特拉达 B、M. 德潘科博 M、贝尼托-洛佩斯 F、伊加图亚 M、巴萨贝-德斯蒙特 L (AC)、埃尔南德斯 RM (AC)。基于细胞外基质蛋白微阵列的单细胞分辨率生物传感器:整合素分析和细胞-生物材料相互作用的表征。传感器和执行器,B:化学。299:126954 (2019)。影响因子:7.460,第一季度。7. Hernando S、Requejo C、Herran E、Ruiz-Ortega JA、Morera-Herreras T、Lafuente JV、Ugedo L、Gainza E、Pedraz JL、Igartua M (AC)、Hernandez RM (AC)。n-3 多不饱和脂肪酸在帕金森病部分病变模型中的有益作用:神经胶质细胞和 NRf2 调节的作用。神经生物学疾病 121:252-262 (2019)。影响因子:5.332,第一季度。 8. Garcia-Orue I、Santos-Vizcaino E、Etxabide A、Uranga j、Bayat A (AC).、Guerrero P、Igartua M、de la Caba K、Hernandez RM (AC)。用于伤口愈合的仿生明胶和明胶/壳聚糖双层水膜的开发。药剂学。 11(7):314-332(2019)。如果:4.699,Q1。 9. Hernando, S.、Herran, E.、Figueiro-Silva, J.、Pedraz JL、Igartua M.、Carro, E.,
人工智能(AI)——定义为模仿人类思维的计算机程序或系统(Russell & Norvig,2003;Turing,1950)——在媒体信息中被描绘成社会进步的工具和充满危险的潘多拉魔盒(Chuan 等人,2019;Obozintsev,2018)。在过去的半个世纪里,《2001:太空漫游》(1968 年)、《终结者》(1984 年)、《黑客帝国》(1999 年)和《我,机器人》(2004 年)等电影都描绘了威胁人类的人工智能(Perkowitz,2007 年)。然而,近年来,人工智能已成为日常生活的一部分,其应用范围广泛,从 Siri 和 Alexa 等虚拟助手到医疗诊断工具。鉴于人工智能日益突出,不仅要了解公众如何看待这项技术,还要了解是什么影响了他们对这项技术的看法,这一点很重要 (Fast & Horvitz, 2017; Neri & Cozman, 2019)。几项全国性调查显示,美国公众对人工智能的看法不一,认为它既有希望,又有潜在的威胁 (Northeastern University & Gallup, 2018; West, 2018; Zhang & Dafoe, 2019)。同样的调查还强调了人口统计、政治倾向和宗教信仰如何预测人们对这项技术的看法。例如,这些调查显示,男性、拥有大学学位的人、年轻人、民主党人和宗教信仰较少的人对人工智能的看法比女性、没有大学学位的人、老年人、共和党人和宗教人士更为积极。相比之下,研究较少关注媒体信息是否(如果是,又是如何影响)对人工智能的看法。然而,媒体对公众对其他新兴技术的看法产生影响的研究结果表明,这些信息可能在促进对人工智能的支持或反对方面发挥重要作用,包括生物技术(Priest,1994)和纳米技术(Brossard 等,2009;Lee & Scheufele,2006)。考虑到这一点,本研究报告借鉴了科学技术的框架和公众舆论理论(Nisbet,2009;Nisbet & Mooney,2007),以探讨不同类型的信息如何影响对人工智能的支持。具体而言,它以先前关于人工智能新闻报道的研究结果为基础(Chuan 等人,2019 年;Obozintsev,2018 年),测试了两种框架对该问题的影响:支持人工智能的“社会进步”框架和反对人工智能的“潘多拉魔盒”框架。该研究还以竞争性框架研究为基础(Chong & Druckman,2007a,2007c;Nisbet 等人,2013 年),通过测试接触竞争性框架对人工智能的影响。同时,它与大多数框架研究(参见 Bolsen 等人,2019 年;Feldman 和 Hart,2018 年;Hart 和 Feldman,2016 年;Powell 等人,2015 年)不同,它研究的是图像(在本例中是现实世界的虚拟助手、现实世界的个人机器人和恐怖电影中的人工智能)如何塑造人们对人工智能的看法,无论是通过图像本身还是与基于文本的框架结合形成的看法。
为包括政府组织,动物园和个人在内的不同客户生成,分析和报告了野生动植物疾病诊断。项目包括基因分型杂交鳟鱼物种,鱼类和两栖动物的PCR诊断,以及野生动植物疾病的诊断以及使用环境DNA鉴定入侵物种。主管:John Wood博士和Janet Epp,M.S。2004-2005专业研究助理,科罗拉多大学博尔德大学。生成了多个研究项目的数据,包括Cutthroat鳟鱼(Onchorynchus clarkii)的植物地理学和黑尾草狗(Cynomys ludovicianus)的城市种群的遗传结构。托管实验室,受监督和培训的六名大学生和一名研究生。主管:Drs。Jessica Metcalf,Ryan Jones,Andrew Martin 2002-2003研究助理,科罗拉多大学,博尔德大学。 收集的数据以研究高山蝴蝶帕纳西乌斯·史密斯(Parnassius Smitheus)的植物地理学和进化,以响应气候变化。 提取的宿主植物和昆虫DNA并进行了PCR。 主管:埃里克·德海恩(Eric DeChaine)博士2001年,科罗拉多大学博尔德大学现场助理。 收集了对蚂蚁和鸟类的观察,以了解科罗拉多州黄松森林中鸟类和昆虫群落的生态和行为相互作用。 进行了节拍板和粘稠的昆虫群落收集,并确定了单个标本。 使用主动学习和其他基于证据的教学实践开发和管理本科课程和研究实习材料。Jessica Metcalf,Ryan Jones,Andrew Martin 2002-2003研究助理,科罗拉多大学,博尔德大学。收集的数据以研究高山蝴蝶帕纳西乌斯·史密斯(Parnassius Smitheus)的植物地理学和进化,以响应气候变化。提取的宿主植物和昆虫DNA并进行了PCR。主管:埃里克·德海恩(Eric DeChaine)博士2001年,科罗拉多大学博尔德大学现场助理。收集了对蚂蚁和鸟类的观察,以了解科罗拉多州黄松森林中鸟类和昆虫群落的生态和行为相互作用。进行了节拍板和粘稠的昆虫群落收集,并确定了单个标本。使用主动学习和其他基于证据的教学实践开发和管理本科课程和研究实习材料。主管:Kailen Mooney博士教学和指导经验2018-2023教练,UCSC,环境DNA科学调查与教育(ESIE)和加利福尼亚环境DNA(Caledna)。每季度管理五名研究生和五名本科助教以及教育资助预算。监督干燥的实验室工作和现场样本收集。有组织的研究实地考察UC储备。2019-2023研究导师,UCSC,Caledna本科实习计划。在为期10周的实习期间,每个夏天直接指导了至少一名基于EDNA的独立研究项目的本科生研究实习生。2017 - 2018年,UT 2012-2013课程:实地生物学实验室(3个长期)。在城市现场实验室共同监督本科生研究。在夜间野外旅行期间,自然保护区对天然和侵入性植物的长期监测。2016-2017犹他州克罗基特高中实习计划的研究生导师。指导了两名高中生,在跨城市梯度的植物 - 托管相互作用的独立夏季研究中进行了指导。2013-2015助教,UT课程:遗传学实验室经验(4个长学期)2013-2015研究生导师,大学生夏季研究经验,UT(REU),UT(3夏季)。指导了三名植物生态研究的独立研究和木匠蜜蜂景观遗传学的本科生。
5。Yetisen,又名等,光子水凝胶传感器。生物技术进步,2016年。34(3):p。 250-271。6。Zhang,D。等人,从设计到刺激反应性水凝胶应变传感器的应用。材料杂志化学杂志b,2020。8(16):p。 3171-3191。7。ionov,L。,基于水凝胶的执行器:可能性和局限性。今天的材料,2014年。17(10):p。 494-503。8。Cheng,F.-M.,H.-X. Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Cheng,F.-M.,H.-X.Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Chen和H.-D.李,水凝胶执行器的最新进展。材料杂志化学杂志b,2021。9(7):p。 1762-1780。9。Hu,L。等人,利用刺激反应性聚合物的动力。高级功能材料,2020年。30(2):p。 1903471。10。li,J。和D.J.Mooney,设计用于控制药物输送的水凝胶。自然评论材料,2016年。1(12):p。 1-17。11。Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。Molecular Pharmaceutics,2019年。17(2):p。 373-391。12。SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。药物交付,2016年。23(3):p。 748-770。13。Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。材料科学与工程:R:报告,2015年。93:p。 1-49。14。刘,Z.,W。Toh和T.Y. 15。刘,Z.,W。Toh和T.Y.15。ng,软材料力学的进步:综述了水凝胶的大变形行为。国际应用机制杂志,2015年。7(05):p。 1530001。Huang,R。等人,智能材料组成型模型的最新进展 - 水凝胶和成形记忆聚合物。国际应用机制杂志,2020年。12(02):p。 2050014。16。Quesada-Pérez,M。等,凝胶肿胀理论:古典形式主义和最近的方法。软件,2011年。7(22):p。 10536-10547。17。Fennell,E。和J.M.Huyghe,化学响应式水凝胶变形力学:评论。分子,2019年。24(19):p。 3521。18。Ganji,F.,F.S。 vasheghani和F.E. vasheghani,水凝胶肿胀的理论描述:评论。 2010。 19。 Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。 Acta Mechanica Sinica,2021。 37:p。 367-386。 20。 Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。 材料科学与工程:C,2021。 127:p。 112208。 21。 Wu,S。等人,对水凝胶体积转变的建模研究。 大分子理论与模拟,2004年。 13(1):p。 13-29。 22。 Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。 传感器,2008。 8(1):p。 561-581。 23。 水,2020年。 24。Ganji,F.,F.S。vasheghani和F.E.vasheghani,水凝胶肿胀的理论描述:评论。2010。19。Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。Acta Mechanica Sinica,2021。37:p。 367-386。20。Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。材料科学与工程:C,2021。127:p。 112208。21。Wu,S。等人,对水凝胶体积转变的建模研究。大分子理论与模拟,2004年。13(1):p。 13-29。22。Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。传感器,2008。8(1):p。 561-581。23。水,2020年。24。Wang,J。等人,作为正向渗透过程中的抽吸溶液的最新发展和未来挑战。12(3):p。 692。Cai,S。和Z. Suo,理想弹性凝胶的状态方程。epl(Europhysics Letters),2012年。97(3):p。 34009。25。li,J。等人,理想弹性凝胶的状态方程的实验确定。软件,2012年。8(31):p。 8121-8128。26。subramani,R。等人,肿胀对聚丙烯酰胺水凝胶弹性特性的影响。材料中的边界,2020年。7:p。 212。27。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。 V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。 固体力学和物理学杂志,2022年。 168:p。 105017。 28。 Xu,S。等人,在脱水下同时加强和软化。 科学进步,2023年。 9(1):p。 EADE3240。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。固体力学和物理学杂志,2022年。168:p。 105017。28。Xu,S。等人,在脱水下同时加强和软化。科学进步,2023年。9(1):p。 EADE3240。