平滑标签分配已成为训练犯罪模型的流行策略。然而,大多数现有方法通常是为分类任务而设计的,忽略了密集的预测问题的潜在属性,例如医疗图像分割。首先,这些策略通常忽略给定像素及其邻居之间的空间关系。和第二,与每个标签相关的图像上下文都被忽略了,这可以传达有关分割掩模中潜在错误或歧义的重要信息。为了解决这些局限性,我们在这项工作中提出了Geodesic标签平滑(GEOLS),该工作通过利用图像的地理距离变换来将图像信息整合到标签平滑过程中。作为生成的标签分配基于计算的测量图,软标签中的类别关系是更好的建模,因为它考虑了两个或多个类别的边界的图像梯度。此外,空间像素的关系是在地球差异转换中捕获的,比诉诸于像素之间的欧几里得距离更丰富的信息。我们在两个公开可用的分割基准标记上评估了我们的方法,并将它们与流行的分割损失函数进行比较,该功能直接修改标准硬牌分配。所提出的测量标签的平滑性提高了现有软标记策略的分割精度,证明将图像信息整合到标签平滑过程中的有效性。重现我们的结果的代码可在以下网址获得:https://github.com/adigasu/geols关键字:图像分割,地球距离,标签平滑
Zhang,J.,Yang,X.,Sagar,S.,Dube,T.,Koo,D.D.,Kim,B.-G.,Jung,Y.-G。,&Zhang,&Zhang,J. (2022)。 使用磨料水喷射技术对热屏障涂层过程的平滑颗粒流体动力学建模。 制造科学与工程杂志,144(091012)。 https://doi.org/10.1115/1.4055048Zhang,J.,Yang,X.,Sagar,S.,Dube,T.,Koo,D.D.,Kim,B.-G.,Jung,Y.-G。,&Zhang,&Zhang,J.(2022)。使用磨料水喷射技术对热屏障涂层过程的平滑颗粒流体动力学建模。制造科学与工程杂志,144(091012)。https://doi.org/10.1115/1.4055048
摘要:导航水下环境提出了控制和本地化技术的严重挑战。未知领土的成功导航需要实现目标的自动操作,同时避免遇到障碍,并提出一个重大问题。使用传感器数据和避免障碍技术的基于检测的控制对于自主水下车辆(AUV)的自主权至关重要。本研究的重点是开发基于滑动模式控制(SMC)的控制方法,并利用成像声纳传感器进行避免障碍物。提出的方法包括用于俯仰和深度控制的控制器,以避免固定物体。采用高斯电位功能来指导AUV的助手并避免障碍物。许多模拟结果评估了AUV在现实模拟条件下的控制性能,从而评估了准确性和稳定性。模拟结果的实验表明,使用海底环境模拟模型,我们在导航各种障碍(例如柔和的上升,陡峭下降和水下壁)方面的表现出色。
引言动脉粥样硬化是一种复杂的炎症状况,是心血管疾病的主要驱动力,这是一系列疾病,导致大约32%的全球死亡(1,2)。治疗动脉粥样硬化的方法包括降脂和抗炎药。不幸的是,他汀类药物无法完全解决CVD风险,尽管降低了脂质的强烈降低,但许多患者仍有残留的风险。此外,由于成本和长期使用的需求,抗炎治疗具有局限性,这会增加感染和败血症的风险。因此,需要其他治疗方法来直接靶向侵蚀性病变中的血管壁细胞(3-8)。令人惊讶的是,很少有任何疗法将重点放在居民血管细胞的病理机制上,这可以为未来的治疗提供当前护理以外的未来治疗的见解。从历史上看,动脉粥样硬化领域的研究集中在血管最内层的内心层的作用上,在通过内皮功能障碍,脂质降解/氧化和巨噬细胞浸润中推动动脉粥样硬化进展(1,3-5)。最近,鼠模型和人动脉粥样硬化组织中的谱系追踪研究定义了重要作用血管平滑肌细胞
我们提出了一种用于光滑粒子流体动力学 (SPH) 方法的量子计算算法。我们使用规范化程序将 SPH 运算符和域离散化编码到量子寄存器中。然后,我们通过量子寄存器的内积执行 SPH 求和。使用一维函数,我们使用高斯和 Wendland 核函数以经典方式测试一维函数的核和以及一阶和二阶导数的方法,并将各种寄存器大小与分析结果进行比较。误差收敛速度在量子比特数上呈指数级增长。我们扩展了该方法以解决流体模拟中常见的一维平流和扩散偏微分方程。这项工作为更通用的 SPH 算法奠定了基础,最终导致在基于门的量子计算机上对复杂工程问题进行高效模拟。
摘要 增材制造 (AMed) 钛产品通常采用电子束熔化 (EBM) 生产,因为在真空环境下可以抑制钛合金表面的氧化。AMed 钛产品的表面粗糙度超过 200 µm Rz,非常粗糙的表面会导致疲劳强度降低。因此,需要后续表面精加工工艺。喷砂是 AMed 金属产品常见的表面平滑工艺之一。它可以降低较大的表面粗糙度,并在表面引入压残余应力。然而,将表面粗糙度降低到几个 µm Rz 是有限的。另一方面,最近发现,通过激光束粉末床熔合生产的 AMed 金属表面可以通过大面积电子束 (LEB) 辐照进行平滑。然而,难以平滑初始表面粗糙度较大的表面,并且表面上可能产生拉残余应力。本研究通过喷砂和 LEB 辐照相结合的方式,实现了 AMed 钛合金 (Ti-6Al-4 V) 的表面平滑和残余应力的变化。通过喷砂和 LEB 辐照相结合的方式,AMed Ti-6Al-4 V 合金的表面粗糙度从 265 µm Rz 显著降低至约 2.0 µm Rz。LEB 辐照降低表面粗糙度的速率随喷砂表面平均宽度的减小而线性增加。平均宽度对 LEB 辐照平滑效果的影响可以通过热流体分析来解释。此外,当 LEB 辐照到喷砂表面时,可以降低 LEB 辐照引起的拉伸残余应力。
摘要 本研究旨在研究氧化三甲胺(TMAO)调控自噬促进动脉粥样硬化(AS)发生发展的作用机制。以ox-LDL处理血管平滑肌细胞(VSMCs)建立AS体外模型,采用CCK-8试剂盒检测VSMCs吸光度(OD)值,采用透射电子显微镜(TEM)监测自噬体,采用Western印迹法(WB)检测Beclin-1、p62、LC3、α-SMA、SM22-α、OPN、PI3K、AKT、mTOR、p-PI3K、p-AKT、p-mTOR蛋白表达。采用实时荧光定量PCR(RT-qPCR)检测α-SMA、SM22-α、OPN、PI3K、AKT、mTOR、Beclin-1、p62、LC3基因表达;采用Transwell小室实验检测VSMCs迁移能力;采用油红O染色法对VSMCs内脂滴进行染色。TMAO明显促进自噬抑制和AS表型转化,TMAO+ox-LDL组p-PI3K/PI3K、p-AKT/AKT、p-mTOR/mTOR、p62蛋白表达高于ox-LDL组,Beclin-1和LC3低于ox-LDL组。 TMAO+ox-LDL组PI3K、AKT、mTOR、p62基因表达量高于ox-LDL组,而Beclin-1、LC3基因表达量低于ox-LDL组。LY294002的干预可逆转相应蛋白和基因的调控。该研究证实TMAO可通过激活PI3K/AKT/mTOR通路促进AS的自噬抑制,为临床诊断方法的改进和AS靶向药物的研发提供可靠依据。(Int Heart J 2023; 64: 462-469) 关键词:PI3K/AKT/mTOR信号,自噬体
简介血管壁是一种复杂的多层组织,其中包含许多细胞群,可协调维持血管稳态并调节疾病状态下的血管重塑。主要动脉的最外层,Tunica Adventitia,由周细胞,成纤维细胞,脂肪细胞,WBC和常驻祖细胞/干细胞组成,均由细胞外基质,血管周围脂肪和Vasa vasorum(1-5)组成。外在重塑发生在慢性血管疾病或急性血管损伤之后,随着外在细胞的增殖,分泌促炎性细胞因子募集循环循环的白细胞,并增加细胞外基质沉积,从而导致慢性血管炎症和慢性血管炎症和僵硬(6,7)。在膜中发现的细胞群体,干细胞抗原-1 +祖细胞(ADVSCA1细胞)已成为兴趣增加的群体,因为这些多能细胞表现出具有特定分化能力的显着异源性基因性,因此对于病理脉管脉冲重塑和血管造成的维修可能很重要(3)。使用平滑肌细胞 - 特异性谱系跟踪和RNA-Seq,我们的组表征了通过原位重编程过程(称为ADVSCA1-SM细胞)来源于成熟平滑肌细胞(SMC)的Advsca1细胞的亚群(8)。与其他
简介血管壁是一种复杂的多层组织,其中包含许多细胞群,可协调维持血管稳态并调节疾病状态下的血管重塑。主要动脉的最外层,Tunica Adventitia,由周细胞,成纤维细胞,脂肪细胞,WBC和常驻祖细胞/干细胞组成,均由细胞外基质,血管周围脂肪和Vasa vasorum(1-5)组成。外在重塑发生在慢性血管疾病或急性血管损伤之后,随着外在细胞的增殖,分泌促炎性细胞因子募集循环循环的白细胞,并增加细胞外基质沉积,从而导致慢性血管炎症和慢性血管炎症和僵硬(6,7)。在膜中发现的细胞群体,干细胞抗原-1 +祖细胞(ADVSCA1细胞)已成为兴趣增加的群体,因为这些多能细胞表现出具有特定分化能力的显着异源性基因性,因此对于病理脉管脉冲重塑和血管造成的维修可能很重要(3)。使用平滑肌细胞 - 特异性谱系跟踪和RNA-Seq,我们的组表征了通过原位重编程过程(称为ADVSCA1-SM细胞)来源于成熟平滑肌细胞(SMC)的Advsca1细胞的亚群(8)。与其他