附件详细说明了方法。除特定框(►框 1)外,已登记在国家犯罪记录中的组成刑事措施未包含在本出版物中,因为它们不是定罪,而是起诉的替代措施。此外,当判决被调整时,该判决会被记录在 CJN 中。尽管刑期可能会减免,但本报告保留的是已判处的刑罚。本报告使用的地理范围对应于法国本土和法国海外省。 2019 年的数据为半最终数据,2020 年的数据为临时数据。 2020 年是一场健康危机。特别是它对管辖范围内的活动产生了影响。尤其是,它导致了法院判决向最高法院传送的延迟。因此,这些结果的出炉时间比平时要晚。违法行为的固定罚款不会记入犯罪记录。此外,2019 年和 2020 年警察法院对五级违法行为的定罪记录尚未公布。2020 年实验性部门刑事法院的判决(代表 110 名罪犯)未包括在 2020 年的定罪记录中。法人的最终定罪也记录在国家犯罪记录中,但本报告未考虑这些定罪。
本文件的编写工作由拉加经委会执行秘书何塞·安东尼奥·奥坎波协调,并与拉加经委会阿根廷办事处前主任胡安·马丁合作; Reynaldo Bajraj,副执行秘书; Alicia Bárcena,可持续发展和人类住区司司长;芭芭拉·斯托林斯 (Barbara Stallings),经济发展司司长; Vivianne Ventura-Dias,国际贸易与一体化司司长;尤金尼奥·拉赫拉,顾问;以及委员会秘书特别助理 María Elisa Bernal。 Jean Acquatella、Oscar Altimir、Mario Cimolli、Ricardo Ffrench-Davis、Len Ishmael、Luis Felipe Jiménez、Jorge Katz、Manuel Marfán、Jorge Martínez、Juan Carlos Ramírez、Daniel Titelman、Andras Uthoff 和 Miguel Villa 参与了各个章节的撰写。以下人员参与了其内容的制定和讨论:María José Acosta、Hugo Altomonte、José Pablo Arellano、Irma Arriagada、Carmen Artigas、Renato Baumann、Rudolf Buitelaar、Inés Bustillo、Alvaro Calderón、Berverley Carlson、Jessica Cuadros、Carlos De米格尔、马丁·迪尔文、埃尔南·多帕索、何塞埃利亚斯·杜兰、休伯特·埃斯凯斯、埃内斯托·埃斯平多拉、费利佩·费雷拉、胡安·卡洛斯·费雷斯、吉尔伯托·加洛平、弗朗西斯科·加托、克里斯蒂安·吉莫斯、何塞·哈维尔·戈麦斯、丽贝卡·格林斯潘、约翰内斯·赫尔曼、迈克尔·亨德里克森、伊莎贝尔·埃尔南德斯、马丁·赫弗特、安德烈·霍弗特曼、马丁·霍本海·里卡多约旦,桑山干雄、亚瑟
67751 计划 201 A 规划理论与实践 W 6-9 ENCARNACION 67752 计划 201 B 规划理论与实践 M 6-9 ENCARNACION 67753 计划 201 C 规划理论与实践 S 9-12 GOMEZ 67754 计划 201 D 规划理论与实践 S 2-5 GOMEZ 67755 计划 203 A 土地利用规划 M 6-9 ESPINA 67756 计划 203 B 土地利用规划 T 6-9 RYE 67757 计划 203 C 土地利用规划 W 6-9 REGUNAY 67758 计划 203 D 土地利用规划 S 2-5 SEROTE 67759 计划 214 A 规划分析与技术 F 6-9 DIAZ 67760 计划 214 B 规划分析与技术 W 6-9 RAZA 67761 计划 214 C 规划分析与技术 M 6-9 ASPIRAS 67762 计划 214 D 规划分析与技术 T 6-9 AGUSTIN 67763 计划 214 E 规划分析与技术 TH 6-9 PATARLAS 67764 计划 299 A 规划研究方法 TH 6-9 RIVERA 67765 计划 299 B 规划研究方法 T 6-9 LORENZO 计划 299 C 规划研究方法 S 2-5 JAGO-ON 67766 计划 299 D 规划研究方法 M 6-9 DIAZ 67767 计划 299 E 规划研究方法 W 6-9 MAGNAYE 67768 计划 210 A 规划过程 TH 6-9 LIWAG 67769 计划 210 B 规划过程 W 6-9 ASPIRAS 67770 计划 210 C 规划过程 T 6-9 REGUNAY 67771 计划 210 D 规划过程 M 6-9 JAGO-ON 计划 210 E 规划过程 S 9-12 REGUNAY 67772 计划 210.1 A 规划研讨会(混合) W 6-9 LIWAG 67774 计划 210.1 C 规划研讨会(混合) F 6-9 DELOS REYES 67775 计划 210.1 D 规划研讨会(混合) T 6-9 PATARLAS 67776 计划 205 A 项目规划与开发 F 6-9 MORALES 67777 计划 230 A 房地产规划与开发 W 6-9 YAP 67778 计划 231 A 场地规划 S 9-12 YAP 67779 计划 232 A 土地经济学 M 6-9 MAGNAYE 67780 计划 239 A 遗产规划中的特殊问题(ISF 社区的复原力升级)
感谢您对我的信任...连续两年获得这个地区拨款...然后是运营资金...然后是提款授权...经过了很多努力才使这个项目取得成果而这一切你都在场。感谢您对我相对不稳定的拼写技巧的坚持和耐心,如果我敢这么说的话……感谢您在我遇到一系列道德障碍,然后是身体障碍时在场,聆听我的讲话……一个接着另一个无法动弹脚踝,然后十字韧带……手术……然后我什至在论文期间决定当爸爸,你没有让我失望,相反你鼓励我。不管怎样,你当时就在那里,那真是太酷了。尽管我们的会议总是以重塑世界或谈论摩托车开始和结束,但一切都很顺利。谢谢你给我一点引导,因为是的,如果你不在那里,我就会走向第六或第七轴。嗯...我们仍然开发了 4...感谢您为我提供您的科学专业知识。您在数据领域的严谨对我来说非常有教育意义。幸运的是,我们没有接触太多的福尔马林……你的编辑和合成技巧正在慢慢地但肯定地在我身上扎根,因为一开始非常……我该怎么说……难以置信。也感谢您让我发展了极大的自主权(方法实施、实地工作、分析)。考虑到工作量,良好的强制自治
Lucas Kim Langley高中摘要本文深入研究了Echo Chambers的现象,以及社交媒体在在线社区内的两极分化中的作用。随着数字通信平台继续塑造公共话语和信息消费,了解回声室背后的机制及其对社会两极分化的影响变得至关重要。本文探讨了Echo Chambers的概念,该概念被定义为绝缘的在线空间,在该空间中,个人主要接触到志趣相投的观点,从而加强了先前存在的信念和对立观点的排斥。利用跨学科研究,研究研究了有助于回声室的形成和维护的心理,认知和社会因素。此外,它研究了社交媒体平台在扩增极化中采用的算法推荐系统的作用。更重要的是,该文章分析了Echo Chambers和社交媒体驱动的两极分化对公共局势,政治两极分化和社会凝聚力的后果。它还强调了潜在的策略和干预措施,以减轻回声室效果并促进更多样化和包容性的在线环境。这项研究的结果揭示了数字通信,回声室和社会两极分化之间的复杂相互作用,最终提供了对在社交媒体时代培养更健康在线话语的挑战和机会的见解。引入了Orkut,MSN,AOL,MySpace和Yahoo!等网站。Echo Chambers可能引言首次引入互联网时,全世界期望连通性的新时代,这在人类历史上是前所未有的。Messenger,预计将以国际规模彻底改变社会世界。现在,田纳西州孟菲斯的一个人可以像与他们的隔壁邻居交谈一样容易与印度孟买的某人交谈。在每次巡回年度都有同时的技术中,预计世界将在以前联系和联系。但是,与这一期望相反,人们已经开车分开并分开了互联网的各个方面。Echo Chambers Echo Chambers是指通常在社交媒体平台上发现的虚拟空间或社交环境,在该平台上,个人主要接触到增强其现有信念和观点的信息,意见和思想(Jiang,Ren和Ferrara,2021年)。在这些回声室中,用户倾向于主要与志同道合的人进行互动并互动,形成了封闭的信息共享循环,从而使他们从异议或反对的观点中隔离开来。因此,回声室可以加剧确认偏见,在这些偏见中,人们寻求并放大了与他们先前存在的信念相吻合的信息,同时否认或忽略矛盾的信息(Cinelli,Cinelli,Morales,Galeazzi,Quattrociocchi,Quattrociocchi和Starnini,&Starnini,2021年)。随着时间的流逝,这种现象会导致群体两极分化,加剧意识形态分裂和阻碍社会内部不同群体之间的建设性对话。
Zona Incerta(Zi)是位于丘脑下方的小型且历史上被忽视的结构,越来越多地因其在各种行为过程中的作用而受到认可。1970年代和1980年代的早期研究探讨了其在摄入行为中的作用,包括饮酒和喂养(综述,请参见Mitrofanis,2005年)(图1A),表明它参与了与食物和水的动机和生存机制。Zi现在被称为异质核,分为四个主要部门:tostral(ZIR),背(ZID),腹侧(ZIV)和尾caudal(ZIC)(Mitrofanis,2005),每个都有独特的神经化学素化。GABA能细胞,白细胞蛋白阳性神经元主要集中在ZIV中,而ZID富含谷氨酸能细胞,ZIR含有多巴胺能神经元(Mitrofanis,Mitrofanis,2005)。最早在60年代(Hyde and Toczek,1962)确定了ZI的运动功能,但由于Zi在帕金森氏病(PD)的背景下进行了研究,重点确实转移到1990年代与运动相关的角色上(Shi等,2024)。引入深脑刺激(DBS)作为PD患者的治疗,丘脑下核(STN)是主要靶标(Benabid等,2009),发现刺激附近的ZI也会显着改善运动症状(Voges等,2002; ossows; ossowska,2020)。这导致了对ZI的新兴趣,使其成为运动障碍疗法的聚光灯。值得注意的是,诸如冷漠之类的动机变化(Czernecki,2005; Ricciardi et al。,2014)提请注意其在动机过程中的潜在作用。因此,其非运动功能,尤其是推动先前表征的摄入行为的潜在奖励过程,受到了较少的关注。然而,PD患者ZI刺激后的非运动效应的报道(尤其是在情绪上)(Stefurak等,2003; Tommasi等,2008)或情感(Burrows等,2012) - 对Zi的角色更广泛。今天,对Zi与奖励和动机有关的行为之间的联系有了新的兴趣。当代地图,监测和操纵神经回路的方法正在改善我们对构成ZI对各种功能的不同子区域和神经元种群的贡献的理解。值得注意的是,Zi与底底nigra pars commanta(SNC)和腹侧对段面积(VTA)具有显着相似之处,尤其是在神经元种群及其行为中的特定参与方面(Mitrofanis,2005年; Margolis和Margolis,2017年)。在与动机有关的病理学(尤其是成瘾的背景下)进行了大量研究,而VTA和SNC最近进行了深入研究,但ZI的这一方面仍然很大程度上没有进行。成瘾是一种慢性精神疾病,尽管对特定行为(例如药物摄入)的控制丧失,尽管后果是负面后果。它涉及寻求,戒断和复发的反复发生的时期,导致螺旋成瘾周期
Acquaah, M. (2007)。新兴经济体中的管理社会资本、战略导向和组织绩效。战略管理杂志,28 (12),1235 – 1255。https://doi.org/10.1002/smj.632 Adomako, S.、Amankwah-Amoah, J.、Danso, A.、Konadu, R. 和 Owusu-Agyei, S. (2019)。家族和非家族企业的环境可持续性导向和绩效。商业战略与环境,28 (6),1250 – 1259。https://doi.org/10.1002/bse.2314 Amankwah-Amoah, J.、Danso, A. 和 Adomako, S. (2019)。创业导向、环境可持续性和新企业绩效:利益相关者整合重要吗?商业战略与环境,28 (1),79 – 87。https://doi.org/10.1002/bse.2191 Ates¸, MA, Bloemhof, J., Van Raaij, EM, & Wynstra, F. (2012)。供应链环境下的主动环境战略:投资的中介作用。国际生产研究杂志,50 (4),1079 – 1095。https://doi.org/10.1080/00207543.2011.555426 Arago'n-Correa, JA (1998)。战略主动性和对自然环境的坚定态度。 Academy of Management Journal,41 (5),556 – 567。Aragón-Correa, JA、Hurtado-Torres, N.、Sharma, S. 和 García-Morales, VJ (2008)。小企业的环境战略与绩效:基于资源的视角。Journal of Environmental Management,86 (1),88 – 103。https://doi.org/10.1016/j.jenvman.2006.11.022 Armstrong, JS 和 Overton, TS (1977)。估计邮件调查中的无回应偏差。Journal of Marketing Research,XIV,396 – 402。Aulakh, P.、Kotabe, M. 和 Teegin, H. (2000)。新兴经济体企业的出口战略与绩效:来自巴西、智利和墨西哥的证据。 Academy of Management Journal,43,342-361。 Banerjee, SB (2001)。管理层对企业环保主义的看法:来自行业的解释及其对组织的战略意义。管理研究杂志,38 (4),489-513。https://doi.org/10.1111/1467-6486.00246 Bansal, P.,& Song, HC (2017)。相似但不相同:区分企业可持续性与企业责任。Academy of Management Annals,11 (1),105-149。https://doi.org/10.5465/annals. 2015.0095 Barney, J. (1991)。公司资源和持续竞争优势。管理学杂志,17 (1),99-120。Chan, RYK (2010)。外国公司在华竞争的企业环保主义追求。世界商业杂志,45 (1),80 – 92。https://doi.org/10.1016/j.jwb.2009.04.010 Chan, RY (2005)。基于自然资源的企业观是否适用于新兴经济体?对在华外商投资企业的调查。管理研究杂志,42 (3),625 – 672。https://doi.org/10.1111/j.1467-6486.2005.00511.x
1。Lamb AN,Rosenfeld JA,Neill NJ等。 在12p12.1时Sox5的单倍不足与具有明显的行为延迟,行为问题和轻度畸形特征的发育延迟有关。 嗡嗡声突变。 2012; 33:728-740。 2。 Aza-Carmona M,Shears DJ,Yuste-Checa P等。 shox与软骨的转录因子Sox5和Sox6相互作用,以使Aggrecan增强剂作用。 hum mol Genet。 2011; 20:1547-1559。 3。 Harley VR,Clarkson MJ,Argentaro A. 睾丸确定因子的分子作用和调节,SRY(Y染色体上的性别确定区域)和Sox9 [与SRY相关的高弹性组(HMG)Box 9]。 Endocr Rev。 2003; 24:466-487。 4。 Truebestein L,Leonard TA。 盘绕螺旋:长而短。 生物评估。 2016; 38:903-916。 5。 Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。Lamb AN,Rosenfeld JA,Neill NJ等。在12p12.1时Sox5的单倍不足与具有明显的行为延迟,行为问题和轻度畸形特征的发育延迟有关。嗡嗡声突变。2012; 33:728-740。2。Aza-Carmona M,Shears DJ,Yuste-Checa P等。shox与软骨的转录因子Sox5和Sox6相互作用,以使Aggrecan增强剂作用。hum mol Genet。2011; 20:1547-1559。3。Harley VR,Clarkson MJ,Argentaro A. 睾丸确定因子的分子作用和调节,SRY(Y染色体上的性别确定区域)和Sox9 [与SRY相关的高弹性组(HMG)Box 9]。 Endocr Rev。 2003; 24:466-487。 4。 Truebestein L,Leonard TA。 盘绕螺旋:长而短。 生物评估。 2016; 38:903-916。 5。 Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。Harley VR,Clarkson MJ,Argentaro A.睾丸确定因子的分子作用和调节,SRY(Y染色体上的性别确定区域)和Sox9 [与SRY相关的高弹性组(HMG)Box 9]。Endocr Rev。2003; 24:466-487。 4。 Truebestein L,Leonard TA。 盘绕螺旋:长而短。 生物评估。 2016; 38:903-916。 5。 Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。2003; 24:466-487。4。Truebestein L,Leonard TA。盘绕螺旋:长而短。生物评估。2016; 38:903-916。 5。 Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。2016; 38:903-916。5。Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。Ikeda T,Zhang J,Chano T等。识别和表征人类长的SOX5(L-SOX5)基因。基因。2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。2002; 298:59-68。6。Wu L,Yang Z,Dai G等。SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。Acta Biochim Biophys罪。2022; 54:987-998。7。Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。Kwan KY,Lam MM,Krsnik Z等。SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。Proc Natl Acad Sci u s a。2008; 105:16021-16026。 8。 神经元。2008; 105:16021-16026。8。神经元。Lai T,Jabaudon,BJ和Al。 SOX5皮质果神经元神经元的依次属。 2008; 57:232-247。 9。 Martin-Mors PL,AC女王,倒钩,道德AV。 sox5按照wnt-beta诱导的途径符合这种新进展的这种进展。 REP。 2010; 11:466-4 10。 问题交流,Stolt CC,Coral R和Al。 neu-robiol必须 2015; 75:522-538。 11。 li,menine menendize c,garci-corse l和al。 我们需要新的成年干细胞操作。 rep眼。 2022; 38:1 12。 Edgerley K,Bryson L,Hanington L和Al。 SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。 am j with genet a 2023; 191:1447-1458。 13。 扬声器M,Na和Al。 变体解释使用人群数据:第一GMMAD。 Mutat的Hum 2022; 43:1012-1 14。 Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。 基因组医学。 2021; 13:31。 15。 ioannidis NM,Rothstein JH,Pejaver V和Al。 reve:变体的致病性。 am j hum genet 2016; 99:877-885。Lai T,Jabaudon,BJ和Al。SOX5皮质果神经元神经元的依次属。2008; 57:232-247。 9。 Martin-Mors PL,AC女王,倒钩,道德AV。 sox5按照wnt-beta诱导的途径符合这种新进展的这种进展。 REP。 2010; 11:466-4 10。 问题交流,Stolt CC,Coral R和Al。 neu-robiol必须 2015; 75:522-538。 11。 li,menine menendize c,garci-corse l和al。 我们需要新的成年干细胞操作。 rep眼。 2022; 38:1 12。 Edgerley K,Bryson L,Hanington L和Al。 SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。 am j with genet a 2023; 191:1447-1458。 13。 扬声器M,Na和Al。 变体解释使用人群数据:第一GMMAD。 Mutat的Hum 2022; 43:1012-1 14。 Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。 基因组医学。 2021; 13:31。 15。 ioannidis NM,Rothstein JH,Pejaver V和Al。 reve:变体的致病性。 am j hum genet 2016; 99:877-885。2008; 57:232-247。9。Martin-Mors PL,AC女王,倒钩,道德AV。sox5按照wnt-beta诱导的途径符合这种新进展的这种进展。REP。 2010; 11:466-4 10。 问题交流,Stolt CC,Coral R和Al。 neu-robiol必须 2015; 75:522-538。 11。 li,menine menendize c,garci-corse l和al。 我们需要新的成年干细胞操作。 rep眼。 2022; 38:1 12。 Edgerley K,Bryson L,Hanington L和Al。 SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。 am j with genet a 2023; 191:1447-1458。 13。 扬声器M,Na和Al。 变体解释使用人群数据:第一GMMAD。 Mutat的Hum 2022; 43:1012-1 14。 Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。 基因组医学。 2021; 13:31。 15。 ioannidis NM,Rothstein JH,Pejaver V和Al。 reve:变体的致病性。 am j hum genet 2016; 99:877-885。REP。2010; 11:466-410。问题交流,Stolt CC,Coral R和Al。neu-robiol必须2015; 75:522-538。11。li,menine menendize c,garci-corse l和al。我们需要新的成年干细胞操作。rep眼。2022; 38:112。Edgerley K,Bryson L,Hanington L和Al。 SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。 am j with genet a 2023; 191:1447-1458。 13。 扬声器M,Na和Al。 变体解释使用人群数据:第一GMMAD。 Mutat的Hum 2022; 43:1012-1 14。 Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。 基因组医学。 2021; 13:31。 15。 ioannidis NM,Rothstein JH,Pejaver V和Al。 reve:变体的致病性。 am j hum genet 2016; 99:877-885。Edgerley K,Bryson L,Hanington L和Al。SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。am j with genet a2023; 191:1447-1458。13。扬声器M,Na和Al。变体解释使用人群数据:第一GMMAD。Mutat的Hum2022; 43:1012-114。Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。基因组医学。2021; 13:31。15。ioannidis NM,Rothstein JH,Pejaver V和Al。reve:变体的致病性。am j hum genet2016; 99:877-885。2016; 99:877-885。16。Macnee M,Perez-Palma E,Brunger T等。cnv-clinviewer:在线增强对大型拷贝数变体的临床解释。生物信息学。2023; 39:1-6。
Ahcene Sahtout(阿尔及利亚),Djazia Dehimi(阿尔及利亚),Mohamed Oundi(阿尔及利亚),Olimpia Torres Barros(Andorra),AdriánBetti(Argentina),Andres Quintana(Andres Quintana(Argentina),Argentina)阿萨德利(Asadli)(阿塞拜疆),Terrance Fountain(Bahamas),Abdulrahman Ahmed Showaiter(Bahrain),Galina Pyshnik(Belarus),Olegovich Pruchkovskiy(Belarus),Katia Huard(Belgium) C Choden(不丹),伊万·阿里亚加(Ivan Aliaga)(玻利维亚(Plurinational of)),理查德·耶稣(RichardJesúsLópezVargas)(玻利维亚(玻利维亚(Plurinational of)),威尔逊·萨利纳斯·奥利瓦雷斯(Plurinational) Iveira(巴西),Viviane Hoffmann(巴西),Aimi Jamain(Brunei Darussalam),Hardiyamin Barudin(Brunei darussalam),Radi Ignatov(保加利亚),Slaveika Nikolova(Slaveika Nikolova) (中国)和),何塞·马林(智利),路易斯·梅德尔·埃斯皮诺萨(Luis Medel Espinoza)(智利),蒙塞拉特·阿兰达(智利),Yan Zheng(中国;中国,香港SAR),凯蒂·霍恩(中国,香港萨尔),王(中国,澳门SAR),奥斯卡·里卡多·圣塔洛佩兹(哥伦比亚),安德烈斯·罗德里格斯·佩雷斯(AndrésRodríguezPérez) Oatia),Gavriel Efstratiou(塞浦路斯),Ioanna Yiasemi(塞浦路斯),Nasia Fotsiou(塞浦路斯),Katerina Horackova(Czechia),Viktor Mrravcik(捷克)穆罕默德·法拉格(埃及),阿尔玛·塞西莉亚·埃斯科巴尔·德·梅纳(Alma Cecilia Escobar de Mena)(萨尔瓦多),卡门·莫雷纳·巴特雷斯·德·格拉西亚斯(Carmen Morena Batres de Gracias)(萨尔瓦多)),查尔斯·奥布塞里·康斯(Ghana) OS Papanastasatos(Greece),Ioannis Marouskos(Greece),Ioulia Bafi(Greece),Manina Terzio(Greece),Robert G. Maldona(Guerra),Atemala,Atemala),Rachel victoria ulcena(Haiti) CSABA HORVATH(匈牙利),Ibolyacsákó(匈牙利),Peter Foldi(匈牙利),Agus Irianto(印度尼西亚),Mohammad Narimani(伊朗)),Imad Abdel Raziq Abdel Raziq Abdel Gani(Iraq)伊莫尼(意大利),Yuki Maehira(日本),Jamil Alhabibeh(约旦),马拉克·马希拉(Malak al-Mahirah)(约旦),阿尔玛·阿吉巴耶娃(Alma Agibayeva)(哈萨克斯坦),斯蒂芬·吉玛尼(肯尼亚),阿克利·阿曼诺夫(Akyl Amanov)(吉尔吉斯斯坦)吉根(Lithuania)g),纳丁·伯恩(Nadine Berndt)(卢森堡),丽塔·卡多斯·塞克斯(Rita Cardoso Seixas)(卢森堡),尼克马特·尤索普(Nikmat Yusop)(马来西亚),约翰·泰斯塔(Malta)(马耳他),维克多·佩斯(Victor Pace),马耳他(Malta)格罗夫),马克·蒙特格罗文(Mark Montegroven),情人节(Valentine gro),阿卜杜勒(Abdelhafid)El Maaroufi(摩洛哥),Abderrahim Matraoui(摩洛哥)(摩洛哥),Ayoub Aboujaafer(摩洛哥),El Maaroufi Abdelhafid(摩洛哥) UNG(缅甸),缅甸林(荷兰),十字军(荷兰),塞兰德(Therlands),Vincent van Beest(New Zealand),Lauren Bellamore(新西兰),ManuelGarcíaMorales(Nicaragua) Ane Odili(尼日利亚),Ngozi Ovijian(挪威),Daniel Oguela(挪威),Bilgrei(挪威),Mahmood Al Arbi Sultante(阿曼),Mohamed Amin(阿曼),Sayed sayed sijjeell haider(pakistan) Z(Paraguay),Juan Pablo Lopez(Paraguay),葡萄牙(Paraguay),Lillian(Paraguay),MathíasJara(Paraguay),Sandra Morales(Peru),Corazon P. Mamigo(Philippines) San Pascual(菲律宾),Lukasz Jedrusza(Pogal),Sok(Pogal),Ana Fierza(Pogal),Quatar Arq(Qatar),Donghyun Kim(大韩民国),Yongwhee Kim(Yong Whee Kim(Yonghee Kim)(韩国共和国),Victor tacu(Victor) UD Alsabhan(沙特阿拉伯),杜桑·伊利克(塞尔维亚),伊夫林·洛(Evelyn Low)(新加坡),梅尔维·安德鲁(Melvyn Andrew)(新加坡),伊娃·德比纳罗娃(EvaDebnarová)(斯洛伐克) ,ElenaAlvarezMartín(西班牙),Thamara Darshana(Sri Lanka),星期五(瑞典),Jennie Hadenberg(瑞典),Johan Ragnemalm(瑞典) (瑞士),Saidzoda Firuz Mansur(Tajikistan),Prang-Anong Saeng-Arkass(泰国),Mouzin(泰国),Timor-leste,Timor-leste,Awi Essossimna(Trinidad and Tobago)(Trinidad and tobago)(Trinimer)(Trrimane andkago)(Trirame) e),苏尔·奥鲁克曼(Türkiye),奥利娜·普加赫(Olena Pugach)(乌克兰),奥尔加·戴维尼科(Olga Davidenko)(乌克兰),维塔·德鲁兹(Vita Druzhynina)(乌克兰),艾哈迈德·阿里·阿里拉特(Ahmed Ali Amirates),乌克兰(乌克兰),阿尔兹米罗·阿尔贝罗·阿尔贝托(Alzemiro Alberto)(乌克兰)。Kerry Eglinton (大不列颠及北爱尔兰联合王国)、Maria Fe Caces (美利坚合众国)、Nicholas Wright (美利坚合众国)、Elisa Maria Cabrera (乌拉圭)、Khatam Djalalov (乌兹别克斯坦)、Alberto Alexander Matheus Melendez (委内瑞拉玻利瓦尔共和国)、Carlos Javier Capote (委内瑞拉玻利瓦尔共和国)、Elizabeth Pereira (委内瑞拉玻利瓦尔共和国)、Ronnet Chanda (赞比亚)、Ashley Verenga (津巴布韦)、Evelyn Taurai Phillip (津巴布韦)、Anan Mohammad Hassan Theeb (巴勒斯坦国)、Mutaz Ereidi (巴勒斯坦国)、Penny Garcia (直布罗陀)
Albihn, A.、Båverud, V. 和 Magnusson, U. (2003)。从患有生育问题的母马体内分离的细菌的子宫微生物学和抗菌药物敏感性。《斯堪的纳维亚兽医学报》,44 (3–4),121–129。https://doi. org/10.1186/1751-0147-44-121。Ballas, P.、Reinländer, U.、Schlegl, R.、Ehling-Schulz, M.、Drillich, M. 和 Wagener, K. (2021)。患有和不患有轻度子宫内膜炎的奶牛在授精时宫内可培养需氧微生物群的特征。《动物生殖学》,159,28–34。 https://doi.org/10.1016/ j.theriogenology.2020.10.018 Bicalho, MLS、Lima, S.、Higgins, CH、Machado, VS、Lima, FS 和 Bicalho, RC (2017)。牛子宫微生物群的遗传和功能分析。第二部分:化脓性阴道分泌物与健康奶牛。乳业科学杂志,100 (5), 3863–3874。https://doi.org/10.3168/jds.2016- 12061 Clemmons, BA、Reese, ST、Dantas, FG、Franco, GA、Smith, TPL、Adeyosoye, OI、Pohler, KG 和 Myer, PR (2017)。产后哺乳奶牛的阴道和子宫细菌群落。 Frontiers in Microbiology,8,1047。https://doi.org/10.3389/fmicb.2017.01047 Díaz-Bertrana, ML、Deleuze, S.、Pitti Rios, L.、Yeste, M.、Morales Fariña, I. 和 Rivera Del Alamo, MM (2021)。野外条件下马子宫内膜炎的微生物流行率和抗菌敏感性。动物,11 (5),1476。https://doi.org/10.3390/ani11051476 Diel de Amorim, M.、Khan, FA、Chenier, TS、Scholtz, EL 和 Hayes, MA (2020)。健康母马和患有子宫内膜炎或纤维化子宫内膜退化的母马子宫冲洗液蛋白质组分析。生殖、生育力和发育,32 (6), 572–581。 https://doi.org/10.1071/RD19085 Durazzi, F.、Sala, C.、Castellani, G.、Manfreda, G.、Remondini, D. 和 De Cesare, A. (2021)。 16S rRNA 和鸟枪测序数据比较肠道微生物群的分类学特征。科学报告,11 (1), 3030。https://doi.org/10.1038/s41598-021-82726-y Frontoso, R.、De Carlo, E.、Pasolini, MP、van der Meulen, K.、Pagnini, U.、Iovane, G. 和 De Martino, L. (2008)。生育问题期间马子宫内细菌分离株及其抗菌敏感性的回顾性研究。《兽医学研究》,84 (1), 1–6。https://doi.org/10.1016/j.rvsc.2007.02.008 Heil, BA, Thompson, SK, Kearns, TA, Davolli, GM, King, G., & Sones, JL (2018). 使用多种技术对马子宫常驻微生物组进行宏遗传学表征。马兽医学杂志,66,111。https://doi.org/10.1016/j.jevs.2018.05.156 Holyoak, GR, Premathilake, HU, Lyman, CC, Sones, JL, Gunn, A., Wieneke, X., & DeSilva, U. (2022)。健康的马子宫拥有独特的核心微生物群以及丰富多样且随地理位置而变化的微生物群。科学报告,12(1), 14790。https://doi. org/10。1038/s41598-022-18971-6 Hurtgen, JP (2006). 马子宫内膜炎的发病机制与治疗:综述。《兽类生殖学》66 (3), 560–566。https://doi.org/10。1016/j.theriogenology.2006.04.006 Jianmei, C., Bo, L., Zheng, C., Huai, S., Guohong, L., & Cibin, G. (2015). 鉴定对羟基苯甲酸乙酯为产于
