。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
在2019年冠状病毒病(COVID-19)中出现了基于废水的流行病学(WBE),这是一种可扩展且广泛适用的方法,用于社区级别监测感染性疾病负担。缺乏严重急性呼吸综合征2(SARS-COV-2)的高分辨率粪便脱落数据限制了我们将WBE测量与疾病负担联系起来的能力。在这项研究中,我们提出了SARS-COV-2 RNA的纵向,定量的粪便脱落数据,以及常用的粪便指标胡椒轻度斑驳病毒(PMMOV)RNA和Crass-like-Phage(Crassphage)DNA。来自48个SARS-COV-2感染者的脱落轨迹表明,SARS-COV-2 RNA粪便脱落的高度个性化的动态过程。提供了至少三个跨越超过14天的粪便样品的个体,有77%的个体有一个或多个样品对SARS-COV-2 RNA呈阳性。,我们在所有个体的至少一个样本中检测到PMMOV RNA,总体上96%(352/367)的样本中检测到了PMMOV RNA。crassphage DNA,并在所有样品的48%(179/371)中检测到。所有个体的粪便中PMMOV和Crassphage的几何平均浓度均为8.7×10 4
摘要 水稻黄斑驳病毒 (RYMV) 是非洲最严重的水稻疾病之一。RYMV 的管理具有挑战性。遗传抗性提供了最有效和最环保的控制。隐性抗性基因座 rymv2 (OsCPR5.1) 已在非洲水稻 (Oryza glaberrima) 中被鉴定,然而,渗入 Oryza sativa ssp。由于跨越障碍,粳稻和印度稻仍然具有挑战性。在这里,我们评估了两种水稻核孔蛋白旁系同源物 OsCPR5.1 (RYMV2) 和 OsCPR5.2 的 CRISPR/Cas9 基因组编辑是否可用于将 RYMV 抗性引入粳稻品种 Kitaake。两种旁系同源物均已被证实可弥补拟南芥 atcpr5 突变体的缺陷,表明存在部分冗余。尽管两种旁系同源物之间存在惊人的序列和结构相似性,但只有 o scpr5.1 功能丧失突变体完全具有抗性,而 oscpr5.2 功能丧失突变体仍然易感,这表明 OsCPR5.1 在 RYMV 易感性中起着特殊作用。值得注意的是,在 OsCPR5.1 的 N 端结构域(预计为非结构化)中存在短的框内删除或替换的编辑线对 RYMV 高度敏感。与单个拟南芥 AtCPR5 基因突变导致植物严重矮化不同,oscpr5.1 和 oscpr5.2 单敲除和双敲除突变体既没有表现出明显的生长缺陷,也没有表现出类似病变表型的症状,这可能反映了功能分化。OsCPR5.1 的特定编辑,同时保持 OsCPR5.2 活性,为在优良稻种系中产生 RYMV 抗性以及与其他 RYMV 抗性基因或其他性状有效叠加提供了一种有前途的策略。
水稻黄斑驳病毒 (RYMV) 是导致非洲最严重的水稻疾病之一。RYMV 的管理具有挑战性。遗传抗性是最有效且环境友好的控制方法。隐性抗性基因座 rymv2 (OsCPR5.1) 已在非洲水稻 (O. glaberrima) 中被鉴定,然而,由于跨越障碍,将其渗入 O. sativa ssp. japonica 和 indica 仍然具有挑战性。在这里,我们评估了是否可以使用 CRISPR/Cas9 基因组编辑两个水稻核孔蛋白同源物 OsCPR5.1 (RYMV2) 和 OsCPR5.2 来将 RYMV 抗性引入粳稻品种 Kitaake。这两个同源物已被证明可以补充拟南芥 atcpr5 突变体的缺陷,表明存在部分冗余。尽管这两个旁系同源物在序列和结构上具有惊人的相似性,但只有 o scpr5.1 功能丧失突变体具有完全抗性,而 oscpr5.2 功能丧失突变体仍然易感,这表明 OsCPR5.1 在 RYMV 易感性中起着特殊作用。值得注意的是,在 OsCPR5.1 的 N 端结构域(预计为非结构化)中存在短的框内缺失或替换的编辑系对 RYMV 高度敏感。与导致植物严重矮化的单个拟南芥 AtCPR5 基因突变相比,oscpr5.1 和 oscpr5.2 单敲除突变体既没有表现出显著的生长缺陷,也没有表明程序性细胞死亡的症状,这可能反映了同工型在其他重要功能方面的功能冗余。对 OsCPR5.1 进行特定编辑,同时保持 OsCPR5.2 活性,为在优良稻种系中产生 RYMV 抗性以及与其他 RYMV 抗性基因或其他性状有效叠加提供了一种有前途的策略。
农业是全球维持和经济发展的基石,是无数行业的粮食,就业和原材料的来源。但是,该行业面临着持续的挑战,其中之一就是作物疾病的流行。这些疾病不仅威胁着农作物的产量和质量,而且威胁着农民的生计和整个社区的粮食安全。在受这些问题影响最大的农作物中是木薯,这是热带和亚热带地区数百万的重要主食。木薯对恶劣条件的韧性使其成为关键的食物来源,但它易受木薯细菌疫病(CBB),木薯棕色条纹疾病(CBSD),木薯绿色mottle(CGM)和木薯马赛亚疾病(CASSAVA GREEN MOTTLE(CGM)和CASAVA MOSAIC疾病(CMD)的脆弱性。及时,准确地确定木薯疾病对于有效管理至关重要,因为早期干预可以防止广泛的爆发并减轻经济损失。传统的疾病检测方法通常取决于专家知识和手动检查,这对于小农户来说可能是耗时,昂贵且无法访问的。人工智能(AI)和机器学习(ML)的进步为这一挑战提供了有前途的解决方案,从而使自动化和准确地检测到植物疾病的大规模检测。该项目引入了一个基于深度学习的木薯疾病检测系统,利用强大的Rexnet-150模型进行图像分类。该系统被部署为使用烧瓶构建的用户友好的Web应用程序,即使对于具有最少技术专业知识的个人,也可以确保可访问性。训练有素的模型能够诊断出高精度的木薯叶条件,将其分为五类:木薯细菌疫病(CBB),木薯棕色条纹病(CBSD),木薯绿色mottle(CGM),木薯马赛克疾病(CMD)和健康。用户只需上传木薯叶的图像,该应用程序提供了即时诊断以及可操作的见解。这些见解包括特定疾病的预防措施和管理策略,使农民有能力采取及时的行动来保护其作物。除了其实际实用性之外,该项目与将技术纳入可持续农业的全球努力保持一致。通过利用AI,它可以增强疾病监测和预防,减少对手动检查的依赖,并支持农民采用积极的农业实践。该解决方案的可扩展性意味着它可以适应其他作物和地区,从而进一步扩大了其对全球农业的影响。
2023 年 2 月 15 日 致:植物和动物咨询委员会 来自:金伯利·约翰逊 Pioneer Hi-Bred International, Inc (Corteva Agriscience) 致:威尔·莱昂·格雷罗,微生物专家 夏威夷农业部植物检疫部门 主题:请求:(1) 允许 Pioneer Hi-Bred International, Inc. 凭许可证进口玉米褪绿斑驳病毒 (MCMV),该病毒被列入限制微生物清单 A 部分,用于实验室工作和遮荫棚接种;以及 (2) 为 Pioneer Hi-Bred International, Inc. 实验室工作和遮荫棚接种而进口玉米褪绿斑驳病毒 (MCMV)(该病毒列于限制微生物清单 A 部分)制定许可条件。I. 申请摘要 PQB 说明:植物检疫处 (PQB) 提交的进口或持有许可证申请(经修订)将申请人提供的信息与 PQB 提供的程序信息和咨询意见及评估区分开来。除了 PQB 说明(以下简称“PQB 说明”)之外,下面第 II 部分第 2 至 7 页提交文件显示的文字直接取自 Kimberley Johnson 的申请以及申请人 Kimberly Johnson 女士随后提供的书面沟通信息。例如,提交文件第 6 页上关于对环境的影响的陈述是申请人的陈述,而不是 PQB 的陈述。这种 PQB 提交方法旨在让申请人更多地参与提交进口申请,以便更快地将这些申请提交给农业委员会 (Board),同时区分申请人提供的信息和 PQB 信息。PQB 准备的提交部分,包括拟议的许可条件和咨询小组委员会审查,被确定为提交的 III 和 IV 部分,分别从第 7 页和第 11 页开始。我们要求审查以下内容:
图像质量、患者剂量和职业暴露。5. 增感屏:发光、荧光和磷光、结构和功能、常用的荧光粉类型、屏幕安装、胶片屏幕接触的保养和维护。增强因子、速度和细节-交叉效应、分辨率、量子斑点、互易律失效、屏幕不对称、清洁。新型荧光粉技术-千伏的影响。光刺激荧光粉成像。6. 暗盒(传统和基于 CR):结构和功能-类型-单个、网格、胶片支架-设计特点和装载/卸载考虑-保养和维护(清洁)。7. 光化学:原理:酸度、碱度、pH、处理周期、显影、显影液。定影、定影液、洗涤、干燥补充、检查和调整-潜像形成-显影性质-显影剂的构成-显影时间-使用显影剂的因素。定影剂-定影液的组成-影响定影剂的因素-定影剂的补充-银的保存-干燥-自动胶片处理机的显影剂和定影剂-漂洗-清洗和干燥。手动和自动处理中的补充率-银的回收-自动和手动化学品。通过加热和恒温器、浸入式加热器以及冷却方法控制化学品的温度。
摘要:E3泛素连接酶在植物免疫中起重要作用,但以前尚未研究它们在大豆中的作用。在这里,我们使用了豆荚病毒病毒(BPMV)介导的病毒诱导的基因沉默(VIGS)来研究大豆中GM Saul1(衰老相关的E3泛素连接酶1)同源物的功能。同时同时沉默了两个密切相关的SAUL1同源物时,大豆植物显示出自动免疫表型,这些表型显着缓解了高温,这表明GM Saul1a/1b可能会受到R蛋白的保护。有趣的是,沉默的GMSAUL1A/1B导致GM MPK6的激活降低,但GM MPK3的激活增加而响应于GMMPK22,这表明GM MPK3的激活很可能导致GM Saul1a/1b-Sbiled植物中观察到的激活免疫。此外,我们提供了GM Saul1a是一个振奋的E3连接酶的证据。共同表明,GM Saul1在调节大豆的细胞死亡和免疫力中起负面作用。