。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年6月30日。 https://doi.org/10.1101/2024.06.27.601088 doi:biorxiv Preprint
1 鲁汶天主教大学发育与再生系子宫内膜、子宫内膜异位症和生殖医学实验室 2 比利时鲁汶天主教大学脑与疾病研究中心 VIB-鲁汶离子通道研究实验室和鲁汶天主教大学分子医学系
基于纳米粒子的新疗法在高级别胶质瘤 (HGG) 中的临床转化仍然非常少。部分原因是缺乏合适的临床前小鼠模型,无法复制复发性 HGG (rHGG) 的复杂特征,即血脑屏障 (BBB) 的异质结构和功能特征。本研究的目的是将 rHGG 的肿瘤 BBB 特征与两种不同的 HGG 小鼠模型(普遍使用的 U87 细胞系异种移植模型和患者衍生的细胞系 WK1 异种移植模型)进行比较,以评估它们是否适合纳米医学研究。方法:使用结构 MRI 评估完全发育肿瘤的小鼠模型中 BBB 开放的程度,并使用动态对比增强 MRI 获取对比增强肿瘤中 BBB 通透性的值。使用 H&E 和免疫荧光染色来验证体内成像研究的结果。结果:U87 模型中对比增强肿瘤中 BBB 破坏程度和通透性明显高于 rHGG。WK1 模型中的这些值与 rHGG 相似。U87 模型不具有浸润性,具有完全异常和渗漏的血管系统,并且不是神经胶质来源。WK1 模型浸润到非肿瘤性脑实质中,它既有完整的 BBB 区域,也有渗漏的 BBB 区域和神经胶质来源残留区域。结论:与 U87 小鼠模型相比,WK1 小鼠模型更准确地再现了 rHGG 患者的 BBB 破坏程度、BBB 通透性水平和组织病理学特征,因此是用于对新兴的基于纳米颗粒的 HGG 疗法进行临床前评估的更具临床相关性的模型。
利用基因编辑技术,成功培育出携带与导致 RTD 2 型的 SLC52A2 基因突变相同的基因突变的小鼠(“RTD 小鼠”)。这些 RTD 小鼠的早期版本在出生前就死亡了。然而,通过在怀孕期间为母亲提供高剂量的核黄素 (FMN) 以及在试验不同的 SLC52A2 基因突变组合和小鼠品种后,成功的 RTD 小鼠可以活着出生以供研究。培育这些 RTD 小鼠主要是为了证明 RTD 基因疗法的安全性和有效性,这是开始人类临床试验前的必要步骤。该基因治疗项目是与德克萨斯州西南德克萨斯大学 (UT) 的 Steven Gray 博士合作进行的。这些 RTD 小鼠还将用于研究导致 RTD 的机制并开发其他新的 RTD 治疗策略。在开始基因治疗试验之前,有必要了解这些 RTD 小鼠的症状和存活率。该项目跟踪了未接受任何治疗或接受与 RTD 患者接受的类似核黄素治疗的 RTD 小鼠组。在研究结束时,测量了小鼠血液和大脑中的核黄素水平(RF、FMN 和 FAD)。导致视力丧失的视神经萎缩是 2 型 RTD 患者最常见的早期症状之一。根据这些信息,18 只 RTD 小鼠的眼睛也被解剖以寻找眼部疾病的迹象。我们很高兴地宣布,这个项目已经完成。这项研究的结果令人鼓舞,表明应该继续对这些 RTD 小鼠进行基因治疗试验。关于 Jackson Laboratories
在小鼠脑jiang-yang Zhang博士中进行扩散张量成像的技术。 NMR研究助理教授Russell H. Morgan放射学科学系Johns Hopkins大学医学院神经科学研究介绍,老鼠模型在促进我们对大脑及其疾病的知识方面发挥了重要作用。 要研究小鼠神经解剖学,尤其是由基因突变或病理引起的神经解剖学的变化,需要新颖的成像工具。 扩散张量成像(DTI)是一个很好的候选者,因为它可以可视化大脑中的白质(WM)结构,并已用于研究神经系统疾病,例如多发性硬化症和阿尔茨海默氏病。 即使DTI在诊所经常进行,但小鼠大脑的DTI仍然是一项艰巨的任务。 在总体积期间,小鼠大脑比人脑小约1000倍。 人脑DTI的当前分辨率约为每个像素1-2 mm。 为了实现相同的相对分辨率,我们需要使用特殊技术来实现小鼠脑DTI的分辨率为0.1-0.2 mm。 小鼠脑DTI的技术挑战在小鼠大脑的DTI中的主要技术挑战是实现高空间分辨率,同时保持令人满意的信号与噪声比(SNR)。 dTI被称为差的SNR技术,因为扩散加权图像中的信号幅度通过扩散敏化梯度减弱。 为了达到令人满意的SNR,大多数小鼠脑DTI实验都是在具有定制线圈的高场系统上进行的。在小鼠脑jiang-yang Zhang博士中进行扩散张量成像的技术。 NMR研究助理教授Russell H. Morgan放射学科学系Johns Hopkins大学医学院神经科学研究介绍,老鼠模型在促进我们对大脑及其疾病的知识方面发挥了重要作用。要研究小鼠神经解剖学,尤其是由基因突变或病理引起的神经解剖学的变化,需要新颖的成像工具。扩散张量成像(DTI)是一个很好的候选者,因为它可以可视化大脑中的白质(WM)结构,并已用于研究神经系统疾病,例如多发性硬化症和阿尔茨海默氏病。即使DTI在诊所经常进行,但小鼠大脑的DTI仍然是一项艰巨的任务。在总体积期间,小鼠大脑比人脑小约1000倍。人脑DTI的当前分辨率约为每个像素1-2 mm。为了实现相同的相对分辨率,我们需要使用特殊技术来实现小鼠脑DTI的分辨率为0.1-0.2 mm。小鼠脑DTI的技术挑战在小鼠大脑的DTI中的主要技术挑战是实现高空间分辨率,同时保持令人满意的信号与噪声比(SNR)。dTI被称为差的SNR技术,因为扩散加权图像中的信号幅度通过扩散敏化梯度减弱。为了达到令人满意的SNR,大多数小鼠脑DTI实验都是在具有定制线圈的高场系统上进行的。强磁场的缺点是它缩短了组织t 2,而加长组织t 1。高场系统比1.5特斯拉或3特斯拉磁铁具有更严重的场不均匀性。简短的T 2和场不均匀性使得通常用于临床DTI的回声平面成像(EPI)的采集类型,在高场系统上很难。除了分辨率挑战外,DTI数据通常还被受试者运动或梯度涡流引起的伪像所损坏。在体内实验期间的受试者运动可以通过更好的动物约束和呼吸触发来最小化。涡流可以通过调整梯度预先强调来显着降低。即使面临这些挑战,近年来,小鼠大脑的DTI也取得了许多进步。表1列出了几个DTI实验及其成像参数。在体内DTI获得的最佳分辨率约为0.1 mm x 0.1 mm x 0.5 mm [1],EX Vivo DTI获得的最佳分辨率为0.02 mm x 0.02 mm x 0.02 mm x 0.3 mm [2]。应用程序分辨率和成像参数
认知表现和最终痴呆症中的大量浮动是α-核核中疾病的重要特征,例如帕金森氏病和刘易体内痴呆,与皮质功能障碍有关。已经建议在患者的大脑皮层中存在错误折叠和聚集的α-核蛋白,在此过程中起着至关重要的作用。然而,A-突触核蛋白积累对体内细胞分辨率在细胞分辨率功能的功能的后果在很大程度上是未知的。在这里,我们使用野生型小鼠中的纹状体播种模型在大脑皮层中诱导了鲁棒的A-核蛋白病理。在单次注射A-突触核蛋白预构纤维的九个月后,我们观察到通过体内两光子钙在清醒小鼠中的体内两光子钙在体体皮质中的2/3层皮质神经元的功能发生了深刻的改变。我们检测到自发活性水平的提高,对搅拌和同步增加的反应增强。立体分析表明,在注射预构纤维的小鼠的体感皮层中,谷氨酸脱羧酶67阳性抑制性神经元减少。重要的是,这些发现指出了令人不安的激发/抑制平衡是电路功能障碍的相关驱动因素,这可能是α-突触性核核酸的认知变化。
层,如果两层未形成,则在苯酚饱和之前添加更多的Tris。4。重复相等的体积为0.1 m tris pH 8.0 5。检查上清液的pH是否在7.5-8.2之间。如果不是,请添加更多0.1 M Tris
fi g u r e 2通过mRNA-LNP AIT调节细胞因子和抗体反应。(a)BALF中IFNγ,IL-4,IL-5和IL-17A的水平; (B – E)在脾细胞上清液中IL-5,IL-4,IFNγIL-17A的水平,用PDP1或DER P 2恢复(PA:增殖测定); (f,g)在免疫前血清或血清中的der p 1-和d p 2特异性IgE水平(OD 450nm,1/10血清稀释时的OD 450nm)或苏敏化,后征和挑战后出血中的血清中。n = 25对于后敏化水平,其他时间点n = 5; (h – i)在接种后,疫苗接种后和挑战后时间点处的PDP1-和DER P 2特异性IgG1和IgG2A抗体滴度。在幼稚小鼠的血清中未检测到特定的抗体(数据未显示)。显示了两个类似实验的代表。p值是在Mann Whitney T检验或单向方差分析中计算的,*P <.05,** P <.01,*** p <.001,**** p <.0001。 mRNA HDM H或L:以10μg/10μg或1μg/1μg剂量的PDP1-DP2K96A mRNA-LNP混合; mRNA CONT H或L:荧光素酶mRNA-LNP在20或2μg剂量下;过敏:没有AIT(PBS)。
资金信息Schweizerischer国家文件国立卫生研究院校外研究办公室,赠款/奖励号:U54 HD100982; Stiftelsen Kristian Gerhard Jebsen; Neuro-Sysmed Center,赠款/奖励号:288164; Fundaci O La Marat O DE TV3,赠款/奖励号:202012-33; NIHR大奥蒙德街医院生物医学研究中心;惠康中级临床奖学金,赠款/奖励号:WT098524MA;英国医学研究委员会(MRC)临床研究,赠款/奖励编号:MR/K02342X/1; MRC生物医学催化剂发展途径资金计划,授予/奖励号:MR/R015325/1;大奥蒙德街医院儿童慈善机构和玫瑰丽斯信托基金会,罗伯特·拉夫基金会和约翰·布莱克基金会,赠款/奖励号:M576,V1284; NIHR研究教授职位,赠款/奖励号:
Diego-Mas, JA.; Garzon Leal, D.; Poveda Bautista, R.; Alcaide Marzal, J.(2019).使用眼动追踪、鼠标移动和遗传算法优化用户界面布局。应用人体工程学。78:197-209。 https://doi.org/10.1016/j.apergo.2019.03.004