受基数效应影响,7 月份中国经济同比增速接近 4.5%(8 月份公布),预计货币政策委员会将在 7 月份会议上维持回购利率不变。
摘要:本文介绍了基于管子的模型预测控制(MPC),用于自主铰接式车辆的路径和速度跟踪。这项研究的目标平台是具有不可轴轴的自主铰接式车辆。因此,铰接角和车轮扭矩输入由基于管的MPC确定。所提出的MPC旨在实现两个目标:最大程度地减少跟踪误差并增强对干扰的鲁棒性。此外,自动铰接式车辆的横向稳定性被认为反映了其动态特性。使用局部线性化制定了MPC的车辆模型,以最大程度地减少建模误差。参考状态是使用基于线性二次调节器的虚拟控制器确定的,以提供MPC求解器的最佳参考。通过在噪声注入传感器信号的基础算法的模拟研究中评估了所提出的算法。仿真结果表明,与基础算法相比,所提出的算法达到了最小的路径跟踪误差。此外,提出的算法对多个信号表现出对外部噪声的鲁棒性。
• MPC + 多服务器 - Fireblocks 依赖于一种称为多方计算 (MPC) 的加密技术。MPC 的工作原理是要求多方以分散的方式解决需要各方输入秘密信息的问题,而任何一方都不会与其他方共享秘密信息。使用 MPC,私钥采用至少 3 个加密密钥共享的形式。每个密钥共享都经过加密并存储在不同的位置。客户可以控制一个密钥共享,而其他密钥共享则无法被任何人(包括 Fireblocks 和客户)访问。当客户触发请求时,每个密钥共享都会参与分布式和独立的签名过程以验证交易。因此,无论是在第一次创建钱包期间还是在实际签名期间,私钥都不会作为一个整体收集。Fireblocks 还为客户提供了多种云和本地选项来存储密钥共享,以确保即使一个位置受到威胁也能提供额外的安全保障。 MPC 技术与 Fireblocks 的多服务器方法相结合,降低了黑客控制整个私钥以破坏钱包的风险。
摘要 - 在对有效的城市和高速公路运输系统需求越来越紧迫的背景下,这项工作探讨了通过使用创新方法来嵌入坡道Metering Control的问题,以嵌入强化强化学习(RL)在模型预测控制中(MPC)框架(MPC)框架中,通过使用创新方法来增强交通流量的协同作用。通过制定代表交通状况,控制措施的可变性以及对排队最大车辆数量的限制的合适阶段成本功能,将控制问题作为RL任务提出为RL任务。基于MPC的RL方法利用MPC最佳问题作为RL算法的函数近似,但提议学习有效地控制坡度并满足其约束,尽管系统模型中的不确定性和可变需求。模拟是在基准小规模高速公路网络上进行的,以将所提出的方法与其他最新控制方法进行比较。结果表明,从具有不精确模型并且调整不当的MPC控制器开始,所提出的方法学能够有效地学习改善控制政策,从而减少网络中的拥塞并满足约束,从而产生优于其他控制器的改进性能。
本文采用两种方法来评估灵活性在绿色氨工厂中的作用:用于工厂设计的线性规划 (LP) 和用于工厂运行的模型预测控制 (MPC)。前一种方法已用于其他绿色氨生产分析,11 – 15 尽管本文提出了一种修改方法来确定存储单元的循环对氨价格的影响程度,并给出了新的灵敏度结果。后一种 MPC 方法在孤岛绿色氨工厂中的应用是新颖的,并且为 LP 提供的结果设置了保护栏。MPC 的目的不是设计专门确定氨工厂运行参数(温度、压力、进料比等)的控制回路;相反,MPC 的目的是作为一种确定氨工厂设定点的算法。换句话说,这里介绍的 MPC 类似于级联控制布置中的主回路,决定电力分配和氨产量。对于这两个模型,天气数据均来自 ERA5,并使用标准涡轮机曲线 13 和 Python 上的 PVLib 模块转换为风能和太阳能数据。16
摘要:本研究重点是自动驾驶,自主车道变化领域的关键任务。自主车道变更在改善交通流量,减轻驾驶员负担和降低交通事故风险方面起着关键作用。然而,由于车道变化场景的复杂性和不确定性,自主巷变化的功能仍然面临着挑战。在这项研究中,我们使用深钢筋学习(DRL)和模型预测控制(MPC)进行了自主巷更换模拟。具体而言,我们使用参数化的软侵略者 - 批评(PASAC)算法来训练基于DRL的车道变化策略,以输出离散的车道更换决策和连续的纵向车辆加速度。我们还基于不同车道的最小预测汽车跟踪成本来选择车道选择。首次比较了在变化决策的背景下DRL和MPC的性能。模拟结果表明,在相同的奖励/成本功能和交通流下,MPC和PASAC的碰撞率为0%。PASAC在平均奖励/成本和车辆速度方面表现出与MPC相当的性能。
本文采用了两种方法来评估extibles在绿色氨植物中的作用:植物设计的线性编程(LP),以及用于植物运行的模型预测控制(MPC)。在绿色氨产生的其他分析中已经采用了这种方法,11 - 15,尽管这里提出了一种隔离阳离子,以确定存储单元对氨价格的影响的程度,并提出了新的敏感性结果。后一种MPC方法在其应用于岛的绿色氨植物中是新颖的,并将后卫导轨置于LP的结果。MPC的目的不是设计控制回路,该控制环确定了氨植物的工作参数(温度,压力,进料比等。);相反,MPC的目的是用作确定氨植物设定点的算法。换句话说,此处介绍的MPC类似于级联反控制排列中的主要环,决定了功率分配和氨的产生。对于这两种模型,天气数据均来自ERA5,并使用标准涡轮曲线13和Python上的PVLIB模块转换为风和太阳能数据。16
零知识简洁的非交互性知识论证(ZKSNARKS)导致了可以简洁验证的证据,但需要大量的计算资源才能产生。先前的系统外包证明通过Pub-LIC委托,该委托揭示了第三方的见证人,或者更优选地是私人代表团,该代表团使用多方计算(MPC)保留证人隐藏。然而,由于MPC不确定,资源利用率不佳以及ZKSNARK协议的次优设计,当前的私人代表团计划在稳定性和效率上挣扎。在本文中,我们介绍了DFS,这是一种新的ZKSNARK,对公共场景和私人场景都非常友好。先前的工作着重于优化用于iS ZKSNARKS的MPC协议,而DFS使用MPC和ZKSNARK之间的共同设计,以使该协议具有分解计算和MPC的有效性。尤其是DFS在非延长设置中实现线性谚语时间和对数验证成本。对于私人代表团,DFS引入了一个计划,其中MPC中的通信开销为零,并免费获得恶意安全性,这导致了遗留的整体通信;先前的工作需要线性通信。我们的评估表明,DFS与公共代表团中最先进的Zksnark一样有效。当用于私人委托时,它比以前的工作更好。特别是,对于2个24个约束,DFS的总体设备小于500 kb,而先前的工作会产生300 GB,这是线性至电路尺寸的。此外,我们在先前的工作中识别并解决了安全性,EOS(USENIX'23)。
摘要:在本文中,我们描述了一个新的概念框架,该概念框架连接近似动态编程(DP),模型预测控制(MPC)和加固学习(RL)。该框架以两种算法为中心,这些算法在很大程度上是彼此独立的,并通过牛顿方法的强大机制在协同作用中起作用。我们称它们为“线”训练和在线播放算法。名称是从涉及游戏的RL的一些主要成功中借来的;主要示例是最近(2017年)Alphazero程序(下棋,[SHS17],[SSS17])和类似结构化的和早期(1990年代)TD-Gammon程序(扮演Backgammon,[Tes94],[TES95],[TES95],[TEG96,[TEG96]))。在这些游戏上下文中,O效率训练算法是一种教授该程序如何评估位置并在任何给定位置产生良好动作的方法,而在线游戏算法是一种实时对抗人或计算机对手的方法。显着,在线训练和在线比赛之间的协同作用也构成了MPC的基础(以及其他主要的顺序决策问题类别),实际上MPC设计体系结构与Alphazero和TD-Gammon的一种非常相似。这种概念上的见解提供了弥合RL和MPC之间文化差距的工具,并为MPC中的某些基本问题提供了新的启示。这些包括通过推出来增强稳定性,通过使用确定性等效性来处理不确定性,MPC在涉及更改系统参数的自适应控制设置中的弹性以及由牛顿方法所暗示的超线性绩效界限提供的见解。
摘要:在本文中,我们描述了一个新的概念框架,该概念框架连接近似动态编程(DP),模型预测控制(MPC)和加固学习(RL)。该框架以两种算法为中心,这些算法在很大程度上是彼此独立的,并通过牛顿方法的强大机制在协同作用中起作用。我们称它们为“线”训练和在线播放算法。名称是从涉及游戏的RL的一些主要成功中借来的;主要示例是最近(2017年)Alphazero程序(下棋,[SHS17],[SSS17])和类似结构化的和早期(1990年代)TD-Gammon程序(扮演Backgammon,[Tes94],[TES95],[TES95],[TEG96,[TEG96]))。在这些游戏上下文中,O效率训练算法是一种教授该程序如何评估位置并在任何给定位置产生良好动作的方法,而在线游戏算法是一种实时对抗人或计算机对手的方法。显着,在线训练和在线比赛之间的协同作用也构成了MPC的基础(以及其他主要的顺序决策问题类别),实际上MPC设计体系结构与Alphazero和TD-Gammon的一种非常相似。这种概念上的见解提供了弥合RL和MPC之间文化差距的工具,并为MPC中的某些基本问题提供了新的启示。这些包括通过推出来增强稳定性,通过使用确定性等效性来处理不确定性,MPC在涉及更改系统参数的自适应控制设置中的弹性以及由牛顿方法所暗示的超线性绩效界限提供的见解。