您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
首先要区分具有国际法基础的免疫力以及由国内立法引起的豁免。大多数州为自己的高级官员提供某些类型的免疫力,特别是为了确保他们能够在受到政治动机的起诉中保护自己的职能。2但是,这些免疫力源于宪法或国内立法行为,而不是根据国际法所规定的任何义务。这是一个纯粹的内部问题,任何国家都有自由决定的自由,只要它与国际义务没有冲突。如果出现这种冲突,国际义务将占上风,因为一个国家“不可能援引其内部法律的规定,以作为其未能执行条约的理由”。3因此,国际引渡或起诉的国际义务将在国内豁免权上占上风。
通过植物育种提高农作物的产量是耗时且费力的,而新颖的等位基因组合的产生受染色体链接块和连锁拖拉的限制。减数分裂重组对于通过父母等位基因的重组创造新的遗传变异至关重要。同源染色体之间的遗传信息交换发生在跨界(CO)位点,但CO频率通常很低且分布不均。这种偏见在重组“冷”区域中引起了连锁 - 拖拉的问题,其中不希望的变化仍然与有用性状相关。在植物中,编程的减数分裂特异性DNA双链断裂,由SPO11复合物催化,启动重组途径,尽管只有〜5%导致COS的形成。为了研究Spo11-1在小麦减数分裂中的作用,作为操纵的前奏,我们使用CRISPR/CAS9在六链球菌的所有三种SPO11-1同种植物中生成编辑。显示植物在所有六个Spo11-1副本中都表现出色,无法接受染色体突触,缺乏COS且无菌。相比之下,在营养生长和生育方面,携带三种野生型同源物中任何一个副本的线条与未经编辑的植物都无法区分。然而,对编辑植物的细胞遗传学分析表明,同种异体产生COS和突触动力学的能力有所不同。此外,我们还表明,携带六个编辑的小麦突变体的转化是用TASPO11-1B基因编辑的SPO11-1副本,恢复突触,CO形成和生育能力,因此为这种具有重要意义的作物的重组提供了一种途径。
1名Muneta Grace Kangara医生。 土壤科学家。 Rothamsted Research West Common Harpenden AL5 2JQ英国。 电话:01582938516。 电子邮件:grace.kangara@rothamsted.ac.uk。 orcid ID:https://orcid.org/0000-0002-3784-4915 2医生Chenjerai。 Muwaniki。 讲师:罗伯特·穆加贝(Robert Mugabe)遗产与教育学校的成人和继续教育。 伟大的津巴布韦大学,津巴布韦马斯文诺市P/BAG 2135。 来访讲师:终身学习和社区发展。 博茨瓦纳大学,加博隆,博茨瓦纳塔尔:+263 775369343。 电子邮件cmuwaniki@gzu.ac.zw。 orcid ID:https://orcid.org/0000-0002-0476-0168 3医生Shephard Siziba。 高级讲师,农业和社会经济学家。 津巴布韦农业综合企业发展与经济学系P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263775780424;发送电子邮件至s.siziba@hotmail.com。 orcid ID:https://orcid.org/0000-0002-6861-0230。 4塔夫雷伊·chamboko医生。 农业经济学家和高级讲师。 津巴布韦农业发展与经济学系P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263 772349599;发送电子邮件至tafireyi2000@gmail.com。 orcid ID:https://orcid.org/0000-0002-5968-369x。 5佛罗伦萨·姆坦巴韦教授。 研究与创新执行董事。 津巴布韦大学P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263 242 303211 Ext 11242/11158;发送电子邮件至fmtambanengwe@admin.uz.ac.zw。1名Muneta Grace Kangara医生。土壤科学家。Rothamsted Research West Common Harpenden AL5 2JQ英国。电话:01582938516。电子邮件:grace.kangara@rothamsted.ac.uk。orcid ID:https://orcid.org/0000-0002-3784-4915 2医生Chenjerai。Muwaniki。 讲师:罗伯特·穆加贝(Robert Mugabe)遗产与教育学校的成人和继续教育。 伟大的津巴布韦大学,津巴布韦马斯文诺市P/BAG 2135。 来访讲师:终身学习和社区发展。 博茨瓦纳大学,加博隆,博茨瓦纳塔尔:+263 775369343。 电子邮件cmuwaniki@gzu.ac.zw。 orcid ID:https://orcid.org/0000-0002-0476-0168 3医生Shephard Siziba。 高级讲师,农业和社会经济学家。 津巴布韦农业综合企业发展与经济学系P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263775780424;发送电子邮件至s.siziba@hotmail.com。 orcid ID:https://orcid.org/0000-0002-6861-0230。 4塔夫雷伊·chamboko医生。 农业经济学家和高级讲师。 津巴布韦农业发展与经济学系P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263 772349599;发送电子邮件至tafireyi2000@gmail.com。 orcid ID:https://orcid.org/0000-0002-5968-369x。 5佛罗伦萨·姆坦巴韦教授。 研究与创新执行董事。 津巴布韦大学P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263 242 303211 Ext 11242/11158;发送电子邮件至fmtambanengwe@admin.uz.ac.zw。Muwaniki。讲师:罗伯特·穆加贝(Robert Mugabe)遗产与教育学校的成人和继续教育。伟大的津巴布韦大学,津巴布韦马斯文诺市P/BAG 2135。来访讲师:终身学习和社区发展。博茨瓦纳大学,加博隆,博茨瓦纳塔尔:+263 775369343。电子邮件cmuwaniki@gzu.ac.zw。orcid ID:https://orcid.org/0000-0002-0476-0168 3医生Shephard Siziba。高级讲师,农业和社会经济学家。津巴布韦农业综合企业发展与经济学系P.O.盒子MP167,山巴布尔山山,津巴布韦。电话:+263775780424;发送电子邮件至s.siziba@hotmail.com。orcid ID:https://orcid.org/0000-0002-6861-0230。4塔夫雷伊·chamboko医生。农业经济学家和高级讲师。津巴布韦农业发展与经济学系P.O.盒子MP167,山巴布尔山山,津巴布韦。电话:+263 772349599;发送电子邮件至tafireyi2000@gmail.com。orcid ID:https://orcid.org/0000-0002-5968-369x。5佛罗伦萨·姆坦巴韦教授。研究与创新执行董事。津巴布韦大学P.O.盒子MP167,山巴布尔山山,津巴布韦。电话:+263 242 303211 Ext 11242/11158;发送电子邮件至fmtambanengwe@admin.uz.ac.zw。orcid ID:http://orcid.org/0000-0002-8250-9075 6教授Volker Wedekind。教育学院的负责人。教育学院,纽约大学诺丁汉大学,诺丁汉,NG8 1BB,英国。电话:0115 951 6529电子邮件:volker.wedekind@nottingham.ac.uk。orcid ID:https://orcid.org/0000-0002-7620-3846。
简介:多酚氧化酶 (PPO) 是一种双活性金属酶,可催化醌的产生。在植物中,PPO 活性可能有助于抗生物胁迫和次生代谢,但对食品生产商来说是不利的,因为它会导致产品在收获后加工过程中变色和风味特征发生变化。在小麦 (Triticum aestivum L.) 中,在碾磨过程中从谷物的糊粉层释放出的 PPO 会导致面粉、面团和最终产品变色,从而降低其价值。同源组 2 染色体上的 PPO1 和 PPO2 旁系同源基因的功能丧失突变导致小麦粒中的 PPO 活性降低。然而,有限的自然变异和这些基因的接近性使得通过重组选择极低 PPO 小麦品种变得复杂。本研究的目标是编辑 PPO1 和 PPO2 的所有副本,以大幅降低优良小麦品种中的 PPO 籽粒活性。
随着越来越多的研究将牲畜农业与更快的全球变暖,更高的健康成本和更高的土地要求联系起来,通常建议将基于植物的饮食的急剧转变为有效的全能解决方案。隐含地,这一论点是基于以下假设:当前分配给动物生产系统的资源的重新分配将自动导致对人类食用作物的有效培养,而没有负面的环境,健康或社会经济后果。实际上,这种假设的有效性值得仔细检查,因为农场采用新的农业系统的能力是多方面的,并且有背景。通过对文献的跨学科综述,我们在这里讨论了意外后果的例子,这些后果可能是由于草原转化为可耕种的生产,包括对产量稳定性,生物多样性,土壤生育能力以及其他可能产生的不利影响。我们认为,这些问题中的几乎没有被认为是当前粮食安全辩论的一部分,并呼吁对供应方约束进行仔细检查。
我们衷心感谢太阳能电池板循环经济委员会以下成员的贡献:环境森林和气候变化部、NITI Aayog、印度孟买理工学院国家光伏研究和教育中心 (NCPRE)、能源与资源研究所 (TERI)、印度工业联合会 (CII)、印度工商会联合会 (FICCI)、科学、技术和政策研究中心 (CSTEP)、Sofies India、Malviya Consultancy 和联合国开发计划署。我们还要感谢以下利益相关方和专家审阅了报告的各个版本并为其制定做出贡献:Shakti 基金会、世界资源研究所 (WRI)、印度、能源环境和水理事会 (CEEW)、印度国家太阳能联合会 (NSEFI) 和 First Solar。
本文已被接受以进行出版和进行完整的同行评审,但并未通过复制,排版,分页和校对过程,这可能会导致此版本与记录版本之间的差异。请引用本文为doi:10.1111/pbi.13573
CRISPR-CAS基因组编辑技术正在快速开发,而新的分子工具(例如CRISPR核酸酶)正在定期使用。作为本研究主题的一部分,Bandyopadhyay等。提供了CAS12A的全面概述,CAS12A是一种CRISPR核酸酶,以前称为CPF1。在他们的评论文章中,作者涵盖了Cas12a的结构和机械方面,与Cas9相比,Cas9是最常用的CRISPR核酸酶。他们还强调了Cas12a的用途,目的是改善各种农作物中的农业重要特征。El-Mounadi等人提供了CAS9基因组编辑应用的概述。谁向读者介绍了Cas9活性的机制,其向植物细胞传递的方法(即转化技术),提供了使用CRISPR-CAS9改善作物性状的示例,并触摸了与基因组编辑相关的生物安全和调节方面。A number of countries (e.g., the USA, Brazil, Argentina, and Japan) have already exempted genome edited crops, which do not carry transgenic DNA or novel combination of genetic material (i.e., not similarly achievable through conventional breeding), from being regulated similarly to Genetically Modified Organisms (GMOs) as genetically engineered (GE) organisms ( Schmidt et al., 2020)。尽管上述国家通过了立法,允许在没有GE监管的情况下培养基因组编辑的农作物,但有关该问题的公众对话和政策发展正在发展。对于日本,Tabei等人。在2019年5月至2019年10月期间分析有关基因组编辑的食品及其标签的Twitter对话。分析表明,有54.5%的相关推文是与使用基因组编辑的农作物生产的食物相反的陈述,而只有7%是有利于它的陈述。其余38.5%的推文是被认为是中性的陈述。尽管由于Twitter用户之间的偏见,该分析不一定代表更广泛的日本社会,但该研究强调了关于基因组问题在日本和世界其他地区进行基因组问题的持续公开对话的重要性。
1 植物科学系,罗瑟姆斯特德研究中心,哈彭登 AL5 2JQ,英国 § 现地址:约翰·英纳斯中心,诺维奇研究园,诺维奇 NR4 7UH,英国 *通讯地址:vladimir.nekrasov@rothamsted.ac.uk 电话:+44 (0)1582 938 292 FH ORCID:0000-0002-0215-3209;VN ORCID:0000-0001-9386-1683 关键词:CRISPR、Cas9、植物、基因组编辑、Golden Gate、MoClo