大萧条发生后,人们认为联邦政府需要干预。罗斯福执政初期,银行改革法、紧急和工作救济计划以及农业计划相继通过。第一次新政(1933-1934 年)通过《紧急银行法》和《1933 年银行法》应对了紧迫的银行危机。经济挑战和失业问题持续存在,罗斯福推出了现在被称为“第二次新政”(1935-1936 年)的一系列计划,被称为“字母汤”。至今仍保留的计划包括:社会保障委员会 (SSB)、证券交易委员会 (SEC)、联邦住房管理局 (FHA)、联邦通信委员会 (FCC)、联邦存款保险公司 (FDIC)、农业信贷管理局 (FCA) 和田纳西流域管理局 (TVA)。通过的其他立法包括《社会保障法》、工会保护计划以及援助农民和移民工人的计划。
摘要 本研究的目的是研究电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对患有特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视觉感知的影响。本研究的调查是半实验研究,前测和后测采用单组,统计方法为混合方差分析。统计人群是德黑兰复活四所女孩 Maad 小学三年级、四年级、五年级、六年级的全部 216 名学生,其中 10 人通过随机抽样和可用抽样进行测量。为了收集信息,使用了(Susan pickering 工作记忆测试、Visconsin 卡片分类测试和 Frostig 测试)。结果表明,特定学习障碍(阅读、写作、数学)学生与正常学生在工作记忆和空间视知觉等方面存在差异,而电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视知觉有影响。 关键词:工作记忆 空间视知觉 学习障碍 电脑游戏 引言 特定学习障碍是指一组异质性障碍,其特征是在言语、阅读、写作、答题或数学技能的习得和使用上存在显著差异。学习障碍是一种在使用口头或书面语言方面存在一种或多种显著障碍,在听、想、说、读、写、拼写或进行数学计算的能力上存在缺陷。特定学习障碍是一种影响儿童接收、处理、分析或存储信息能力的问题。这种障碍会使儿童难以阅读、写作、拼写或解决数学问题 [1]。学生特定学习障碍的主要特征包括:自然智力水平、学习成绩低于预期、学习速度慢、认知发展、教育基础重复、学习水平差异、不同学习、课程学习。能力和技能之间存在显著差异,注意力范围狭窄[2]。换句话说,他们尽管智力正常,却无法学习,虽然成长的各个方面与生物成熟度有直接关系,但一般认为生物和非生物因素都可以发挥作用[3]。人类的学习工具随着环境而变化。如果今天的儿童和青少年
Nathan Shammah,Riken - 量子技术的开源科学计算:QUTIP 2019年1月26日 - 美国伯克利实验室,美国
评估心脏骤停后昏迷患者的神经功能完整性仍是一个悬而未决的挑战。昏迷结果的预测主要依赖于专家对生理信号的视觉评分,这种方法容易产生主观性,并使相当多的患者处于预后不确定的“灰色地带”。对听觉刺激后脑电图反应的定量分析可以让我们了解昏迷时的神经功能以及患者苏醒的机会。然而,由于协议繁琐多样,标准化听觉刺激后的反应还远未在临床常规中使用。在这里,我们假设卷积神经网络可以帮助提取昏迷第一天对听觉刺激的脑电图反应的可解释模式,这些模式可以预测患者苏醒的机会和 3 个月后的存活率。我们使用卷积神经网络 (CNN) 对多中心和多方案患者队列中在标准化镇静和目标体温管理下昏迷第一天对听觉刺激的单次脑电图反应进行建模,并预测 3 个月时的结果。对于接受治疗性低温和常温的患者,使用 CNN 预测觉醒的阳性预测率分别为 0.83 ± 0.04 和 0.81 ± 0.06,预测结果的曲线下面积分别为 0.69 ± 0.05 和 0.70 ± 0.05。这些结果也持续存在于处于临床“灰色地带”的一部分患者中。网络预测结果的可信度基于可解释的特征:它与脑电图反应的神经同步性和复杂性密切相关,并受到独立临床评估的调节,例如脑电图反应性、背景爆发抑制或运动反应。我们的研究结果强调了可解释的深度学习算法与听觉刺激相结合在改善昏迷结果预测方面的巨大潜力。
图4。砷矿甲基转移酶(ARSM)基因在鳟鱼湖,钢铁湖和基拉尼湖的周围DNA中检测到了PCR,使用靶向该基因保守区域的退化引物。从三个南部海湾声音湖中收集了植物,砷湖:鳟鱼湖(<1 ppb),钢铁湖(〜2 ppb)和基拉尼湖(〜20 ppb)。DNA以不同的浓度在聚合酶链反应(PCR)中用作模板,以不同的浓度:1 ng/ul,2 ng/ul和4 ng/ul。用两个引物对之一进行 PCR:与16S rRNA或ARSM基因互补。琼脂糖凝胶电泳。该图显示了用荧光染料,分子量(MW)梯子和可变标签可视化的凝胶。16S rRNA引物预计将导致111个碱基对(BP)的PCR产物,并且ARSM引物(MF1和MR2)预计将导致302至346 bp之间的PCR产物。
变异自动编码器(VAE)[19,41]是一个人口,深,潜伏的模型(DLVM),这是由于其简单而有效的数据用于建模数据分布。优化VAE目标函数比其他DLVM更易于管理。VAE的瓶颈维度是一个至关重要的设计选择,并且对模型的性能具有很强的冲突,例如使用VAE学到的代表来找到数据集的隐藏解释因素。但是,VAE的潜在维度的大小通常被视为通过反复试验和误差经验估计的高参数。为此,我们提出了一个统计公式,以发现建模数据集所需的潜在因素。在这项工作中,我们在潜在空间中使用层次先验,使用编码数据估算潜在轴的方差,该数据标识了相关的潜在维度。为此,我们用层次的先验代替了VAE客观功能中的固定先验,使剩余的配方保持不变。我们将所提出的方法称为变异自动编码器(ARD-VAE)1中的自动相关性检测。我们证明了ARD-VAE在多个基准数据集中找到相关的LATENT尺寸及其对不同评估的效果(例如FID得分和分离分析分析)的疗效。
安全信息................................................................................................................................................................................................................................................................................................................................................................... Intended Users......................................................................................................... 2 Clinical Benefit......................................................................................................... 3 Device Lifetime......................................................................................................... 3禁忌症.................................................................................................................................................................................................................................................................................................................................................................事件............................................................................................................................................................................................................................................................................................................................................. 13
我们建议使用二维 Penning 阱阵列作为量子模拟和量子计算的可扩展平台,以捕获原子离子。这种方法涉及将定义静态电四极子位置的微结构电极阵列放置在磁场中,每个位置捕获单个离子并通过库仑相互作用与相邻离子耦合。我们求解此类阵列中离子运动的正常模式,并推导出即使在存在陷阱缺陷的情况下也能实现稳定运动的广义多离子不变定理。我们使用这些技术来研究在固定离子晶格中进行量子模拟和量子计算的可行性。在均匀阵列中,我们表明可以实现足够密集的阵列,轴向、磁控管和回旋加速器运动表现出离子间偶极耦合,其速率明显高于预期的退相干。通过添加激光场,这些可以实现可调范围的相互作用自旋汉密尔顿量。我们还展示了局部电位控制如何隔离固定阵列中的少量离子,并可用于实现高保真门。使用静态捕获场意味着我们的方法不受系统尺寸增加时的功率要求限制,从而消除了标准射频陷阱中存在的重大缩放挑战。因此,这里提供的架构和方法似乎为捕获离子量子计算开辟了一条道路,以实现容错规模的设备。
储存器计算 (RC) [1, 2] 是一种循环神经网络,近年来因其训练成本低、可通过专用电路 [3, 4] 和物理 RC [5, 6] 在硬件上实现而备受关注。RC 由储存器部分和读出部分组成,储存器部分接收时间序列输入并将其非线性转换为高维空间以表示输入的时空模式,读出部分从储存器部分拾取一些模式来分析输入并生成输出。RC 的主要优势是除读出部分之外的权重连接都是固定的。因此,与深度神经网络相比,其训练所需的数据量更少,计算成本更低。因此,RC 适用于计算资源有限且无需云计算即可执行训练的边缘 AI 系统。 RC 的读出大多由线性模型(单层感知器)实现,因此,读出的适应训练数据的能力有限。为了增强 RC 的训练能力,我们提出了一个具有多个读出的 RC 模型,该模型将一个读出的训练分散,以便每个读出可以专注于特定类型的训练数据。该方法可以看作是一种集成学习,用于增强 RC 泛化性能。简单地增加读出的数量对于边缘 AI 系统来说是低效的,因为它会消耗系统中有限的内存资源。本研究引入了一种自组织函数,它能够使用
1 Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children 's Hospital, IRCCS, Rome, Italy, 2 Department of Medical and Surgical Sciences, simple operating unit of chronic intestinal in -final diseases, Cemad, complex operating unit of internal medicine and gastroenterology, foundation. Agostino gemelli irccs,罗马,意大利,意大利,3生物学和生物技术系“查尔斯·达尔文”,罗马罗马萨皮恩扎,意大利罗马大学,纳米技术研究中心,适用于工程中心,适用于工程中心,萨皮恩扎大学,罗马大学,罗马大学,罗马,罗马大学,苏格尔5.意大利,6个微生物学和诊断免疫学单位,微生物学和免疫学研究领域,风湿病学和传染病,人类微生物组,BambinoGesù儿童医院,IRCC,Rome,Rome,Rome,Ital,意大利,意大利1 Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children 's Hospital, IRCCS, Rome, Italy, 2 Department of Medical and Surgical Sciences, simple operating unit of chronic intestinal in -final diseases, Cemad, complex operating unit of internal medicine and gastroenterology, foundation. Agostino gemelli irccs,罗马,意大利,意大利,3生物学和生物技术系“查尔斯·达尔文”,罗马罗马萨皮恩扎,意大利罗马大学,纳米技术研究中心,适用于工程中心,适用于工程中心,萨皮恩扎大学,罗马大学,罗马大学,罗马,罗马大学,苏格尔5.意大利,6个微生物学和诊断免疫学单位,微生物学和免疫学研究领域,风湿病学和传染病,人类微生物组,BambinoGesù儿童医院,IRCC,Rome,Rome,Rome,Ital,意大利,意大利