摘要 — 在本文中,ATSC 3.0 广播无线接入技术 (RAT) 与 3GPP 5G NR RAT 保持一致,从版本 16 开始,5G 融合的背景下开始。5G 系统架构版本 16 包括一个新的 5G 物理层,称为 5G NR“新无线电”和使用云计算的“云原生”5G 核心 (5GC)。5GC 与所使用的无线接入技术类型无关,并且是多种融合的推动者。讨论了一种旨在与 5GC 互通的新型共享多租户广播核心网络架构。使用 Release 16 的方法,3GPP 5G NR 单播和非 3GPP ATSC 3.0 广播协同对齐。这包括使用 3GPP 接入流量引导、交换、拆分 (ATSSS) 和多无线电双同步连接用户设备 (UE)。这使 ATSC 3.0(第一个前瞻性(非向后兼容)原生 IP OFDM 广播标准)与 3GPP LTE/5G 单播作为融合的 5G 垂直行业保持一致。所提出的方法和架构与 LTE 广播 Release 16 正交,并且与未来的 5G NR 混合模式多播单播协同。
IKE 互联网密钥交换协议 INRIA 法国国家信息和自动化研究所 IP 互联网协议 IPng/IPv6 下一代互联网协议/版本 6 IPSec 互联网协议安全(身份验证、数据完整性、加密) IPv4 互联网协议版本 4 ISDN 综合业务数字网 LAN 局域网 LEO 低地球轨道 MCS 多机驾驶舱模拟器 MoU 谅解备忘录 NSM 网络服务管理 OSI 开放系统互连 OSPF 开放最短路径优先 PRIMA IP 移动自组织网络项目 QoS 服务质量 RAT 强健音频工具 RFC 征求意见 RIP 路由信息协议 RM 可靠多播 RNRT 法国国家电信网络 SARP 建议实践标准(国际民航组织) UCL 伦敦大学学院 UDLR 单向链路路由协议 UMTS 通用移动电信系统 VIC 视频会议应用程序 VPN 虚拟专用网络 XDSL X 数字用户线路
IKE 互联网密钥交换协议 INRIA 法国国家信息和自动化研究所 IP 互联网协议 IPng/IPv6 下一代互联网协议/版本 6 IPSec 互联网协议安全性(身份验证、数据完整性、加密) IPv4 互联网协议版本 4 ISDN 综合业务数字网 LAN 局域网 LEO 低地球轨道 MCS 多机驾驶舱模拟器 MoU 谅解备忘录 NSM 网络服务管理 OSI 开放系统互连 OSPF 开放最短路径优先 PRIMA IP 移动自组织网络项目 QoS 服务质量 RAT 强健音频工具 RFC 征求意见 RIP 路由信息协议 RM 可靠多播 RNRT 法国国家电信网络 SARP 建议实践标准(国际民航组织) UCL 伦敦大学学院 UDLR 单向链路路由协议 UMTS 通用移动电信系统 VIC 视频会议应用程序 VPN 虚拟专用网络 XDSL X 数字用户线路
IKE 互联网密钥交换协议 INRIA 法国国家信息和自动化研究所 IP 互联网协议 IPng/IPv6 下一代互联网协议/版本 6 IPSec 互联网协议安全(身份验证、数据完整性、加密) IPv4 互联网协议版本 4 ISDN 综合业务数字网 LAN 局域网 LEO 低地球轨道 MCS 多机驾驶舱模拟器 MoU 谅解备忘录 NSM 网络服务管理 OSI 开放系统互连 OSPF 开放最短路径优先 PRIMA IP 移动自组织网络项目 QoS 服务质量 RAT 强健音频工具 RFC 征求意见 RIP 路由信息协议 RM 可靠多播 RNRT 法国国家电信网络 SARP 建议实践标准(国际民航组织) UCL 伦敦大学学院 UDLR 单向链路路由协议 UMTS 通用移动电信系统 VIC 视频会议应用程序 VPN 虚拟专用网络 XDSL X 数字用户线路
IKE 互联网密钥交换协议 INRIA 法国国家信息和自动化研究所 IP 互联网协议 IPng/IPv6 下一代互联网协议/版本 6 IPSec 互联网协议安全性(身份验证、数据完整性、加密) IPv4 互联网协议版本 4 ISDN 综合业务数字网 LAN 局域网 LEO 低地球轨道 MCS 多机驾驶舱模拟器 MoU 谅解备忘录 NSM 网络服务管理 OSI 开放系统互连 OSPF 开放最短路径优先 PRIMA IP 移动自组织网络项目 QoS 服务质量 RAT 强健音频工具 RFC 征求意见 RIP 路由信息协议 RM 可靠多播 RNRT 法国国家电信网络 SARP 建议实践标准(国际民航组织) UCL 伦敦大学学院 UDLR 单向链路路由协议 UMTS 通用移动电信系统 VIC 视频会议应用程序 VPN 虚拟专用网络 XDSL X 数字用户线路
IKE 互联网密钥交换协议 INRIA 法国国家信息和自动化研究所 IP 互联网协议 IPng/IPv6 下一代互联网协议/版本 6 IPSec 互联网协议安全性(身份验证、数据完整性、加密) IPv4 互联网协议版本 4 ISDN 综合业务数字网 LAN 局域网 LEO 低地球轨道 MCS 多机驾驶舱模拟器 MoU 谅解备忘录 NSM 网络服务管理 OSI 开放系统互连 OSPF 开放最短路径优先 PRIMA IP 移动自组织网络项目 QoS 服务质量 RAT 强健音频工具 RFC 征求意见 RIP 路由信息协议 RM 可靠多播 RNRT 法国国家电信网络 SARP 建议实践标准(国际民航组织) UCL 伦敦大学学院 UDLR 单向链路路由协议 UMTS 通用移动电信系统 VIC 视频会议应用程序 VPN 虚拟专用网络 XDSL X 数字用户线路
规格建议的运行条件最小标称最大限制探测器通道数量1-16-检测器输入电压0MV -180MV至-550MV -1200MV -1200MV -1200MV脉冲宽度0.48NS 6NS 6NS 6NS至12NS至12NS 34NS-触发边缘边缘掉落 - 可触发边缘掉落 - 可触发的Edgromable -able -able -able -able -able -ablebable thosmable thosmable -000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000。 -3000mV 3300mV 4000mV Input Impedance 50Ω Sync Inputs - GPS Input voltage 0mV 1000mV - 3000mV 3300mV 4000mV Input Impedance 50Ω Time to digital Converter (TDC) Minimum time bin width Refer to Mode Parameters table Timing precision 3ps 4ps Timing precision (rms) 2.12ps 2.8ps Adjustable delay range - Sync TBD Count rate Refer to Mode Parameters table Sync Rate TBD Histogrammer Count depth 16 bit Maximum number of bins 65536 Acquisition time - Oscillator sync 1ms TBD Acquisition time - GPS Sync 1ms Infinite Temperature Range Operating 0 o C - +50 o C 70 o C Storage -40 o C - +85 o C 100 o C 64-bit Time Tagging Channel Number Bits [60:63] (4 bits, 16 values) Sync event count/GPS UTC Bits [32:59] (28 bits, 4,294,967,296 values) Time Offset from sync event Bits [0:31] (32 bits, 268,435,456 values) 250fs resolution GPS Time Tagging GPS tagging allows time correlation of tags for experiments & communication systems in different physical locations.标签存储在FIFO内存中,准备在硬件接口上交付,以便在多个通道上的高速爆发收集。FIFO DEPTH 65536标签。GUI和软件模块化软件方法:模块化软件系统。用于直方图生成,巧合计数和定制模块的模块可用于特定客户应用程序灵活性Python&LabView界面,可为客户自己的接口提供。具有以太网选项的网络,可以将仪器设置为多播服务器,从而允许通过订阅多播组的多个软件连接到单个仪器。适用于许多客户需要从组检测器来源访问标签信息的大型实验室。简单的仪器接口:仪器管理接口,用于选择同步源,设置TAC模式并设置标签交付过程。主机界面USB 3.0链接链接速度5GB/s,最大持续标签率= 80 mtag/sec以太网链路链接速度1GB/s,最大持续标签率= 15.625 mtag/sec操作系统支持OS:使用交叉平台GUI接口机械宽度260mm Depth 260mm Divors Sma Andope sma sma connects os:windows/linux sma connects sma
MIB 和 RFC 标准 • RFC1213 MIB II • RFC1907 SNMP v2 MIB • RFC5519 IGMP v3 MIB • RFC1724 RIP v2 MIB • RFC2021 RMONv2 MIB • RFC1643、RFC2358、RFC2665 以太网类 MIB • RFC4836 802.3 MAU MIB • RFC4363 802.1p MIB • RFC2618 RADIUS 身份验证客户端 MIB • RFC4292 IP 转发表 MIB • RFC2932 IPv4 多播路由 MIB • RFC2934 用于 IPv4 的 PIM MIB • RFC2620 RADIUS 计费客户端 MIB • RFC2925 跟踪路由 MIB • RFC2925 Ping MIB • RFC1850 OSPF MIB • 私有 MIB • RFC1112、RFC2236、RFC3376、RFC4541 IGMP 侦听 • RFC4363 802.1v • RFC2338 VRRP • RFC1058、RFC1388、RFC1723、RFC2453、RFC2080 RIP • RFC1370 OSPF 适用性声明 • RFC1765 OSPF 数据库溢出 • RFC2328 OSPF v2 • RFC2740 OSPF for IPv6 • RFC3101 OSPF 次末梢区域 (NSSA) 选项;使 RFC1587 过时 • RFC2328 使 RFC2178 过时 • RFC2178 使 RFC1583 过时 • RFC1771、RFC1997、RFC2439、RFC2796、RFC2842、RFC2918 BGP • RFC3973 PIM-DM • RFC5059 PIM-SM • RFC3569、RFC4601、RFC4608、RFC4607、RFC4604 PIM SSM • RFC3376 IGMP • RFC2475 优先级队列映射 • RFC2475、RFC2598 服务类别 (CoS)
在本文中,我们提出了一种用于在架构中分发纠缠的技术,其中量子对之间的相互作用被限制在固定的网络g上。这允许在GATE传送中彼此远程偏远的Qubits之间执行两倍的操作。我们证明了如何使用将量子线性网络编码编码到Qubits网络中的纠缠分布问题的问题,可以用来解决分布钟状状态和GHz状态的概率,而G中的瓶颈则否则G中的瓶颈会迫使这种纠缠的状态被迫使该状态进行顺序分布。,我们表明,通过减少固定网络g中K问题或多个多播问题的经典网络编码协议,可以用cli的量子电路在发射机和接收器之间分布纠缠,其量子深度的量子深度为某些(通常是小且易于调整)不变,但是依赖于Transmits和Transmits的接收器,并且是遥远的转移器和遥控器。这些结果也直接概括到任何质量尺寸的Qudits。我们使用专门的形式主义证明了我们的结果,与稳定剂形式主义相比,与稳定器形式主义更有效,这很可能有助于推理和原型此类量子线性网络编码电路。
AL09-04 L 13 | 19:00-19:20 | 0.6近似加权阈值访问结构Miquel Guiot(University Rovira I Virgili)A09-05 m 14 |的秘密共享方案| 15:00-15:20 | 0.6关于多播加密的通信成本的下限和群体汇报Miguel Cueto Noval(奥地利科学技术研究所)A09-06 M 14 | 15:30-15:50 | 0.6加密协议的正式建模和分析ArturoHernándezSánchez(Vrain,UniversitypolitècnicaDeValència),09-07 M 14 | 16:00-16:20 | 0.6乳酸问题和安全性Miguelángelgonzálezdelare(InstitodeTechnologíasfísicasyElainformación-csic)a09-08 m 14 | 16:30-16:50 | 0.6对私人平均聚集的阈值同态加密的批判性看待Miguel Morona-Mínguez(Vigo大学)A09-09 M 14 | 17:30-17:50 | 0.6前进的对称密码学:拟合协议的对称技术的加密分析(Stap)Irati Manterola Ayala(Simula UIB)在09-10 M 14 | 18:00-18:20 | 0.6 DME-Minus Signatus方案Pilar Coscojuela(Madrid大学)A09-11 M 14 | 18:30-18:50 | 0.6使用卷积代码MiguelBeltráVidal(Alicante University of Alicante)对基于代码的密码系统的安全分析