人类通过感知和应对错误来实现高效的行为。错误相关电位 (ErrP) 是在感知错误时发生的电生理反应。有人提出利用 ErrP 来提高脑机接口 (BCI) 的准确性,利用大脑的自然错误检测过程来提高系统性能。然而,外部和环境因素对 ErrP 可检测性的影响仍然不太清楚,特别是在涉及 BCI 操作和感觉运动控制的多任务场景中。在此,我们假设感觉运动控制的困难会导致多任务处理中的神经资源分散,从而导致 ErrP 特征的减少。为了检验这一点,我们进行了一项实验,其中指示参与者将球保持在板上的指定区域内,同时尝试通过运动想象控制显示屏上的光标。BCI 以 30% 的随机概率提供错误反馈。根据感觉运动控制的难度,我们采用了三种场景——无球(单任务)、轻量球(简单任务)和重量球(困难任务)——来描述 ErrP。此外,为了研究多任务对 ErrP-BCI 性能的影响,我们离线分析了单次试验分类准确度。与我们的假设相反,改变感觉运动控制的难度不会导致 ErrP 特征发生显著变化。然而,多任务会显著影响 ErrP 分类准确度。事后分析显示,在单任务 ErrP 上训练的分类器在困难任务场景下准确度降低。据我们所知,这项研究是首次在离线框架内研究在涉及感觉运动控制和 BCI 操作的多任务环境中 ErrP 是如何被调节的。尽管 ErrP 特征保持不变,但观察到的准确度变化表明,在实现基于 ErrP 的实时 BCI 之前,需要设计考虑任务负荷的分类器。
媒体多任务处理是广泛的,但其与创造力的关系尚不清楚。本研究采用了措施的组合,包括媒体多任务问卷,替代用途任务(AUT),用于发散思维,中国复合远程关联任务(CCRAT)用于收敛性思维,以及解决创造性问题的任务,以检查媒体多任务和创造力之间的关系。极值分组[一个标准偏差以上或低于媒体多任务指数(MMI)的平均值],中值分组和回归分析用于探索媒体多任务和创造力之间的关系。结果揭示了以下发现:(1)在三种分析方法中,媒体多任务与AUT任务的性能之间没有显着关系。然而,在MMI平均值以上的一个标准偏差范围内,媒体多任务在AUT任务上显示出与流利度,灵活性和总分的显着正相关。(2)媒体多任务显着预测了响应在CCRAT任务上的准确性。(3)媒体多任务明显地预测了在创意解决问题任务的适用性上的分数较低。
疏水性是由纤维真菌产生的小两亲性细胞外蛋白。它们是表面活性蛋白,它们的功能主要与它们在疏水 - 亲水性接口处自我组装成两亲性单层的能力有关。取决于其水文模式和纯粹的要求,它们被分为I类和II类;两者都在整个序列中均表现出八个保守的半胱氨酸,形成了四个拆桥,它们产生了四个循环,可以使蛋白质以其单体和折叠形式稳定。I类杂菌环比II类杂菌环更扩展,从而导致不同表面的组装差异,并伴随着蛋白质结构的构象变化。 在单体杂素糖基化形式中,疏水素富含β-地表结构,同时在水中组装时 - 空气界面在其结构中增加了β-单表的含量,并且与水的界面和疏水固体在界面上,以及诸如TE的杂化固体,例如TE的形成也诱导了α-α-α-α-α-α-α-elix -Helix -Helix -Helix -Helix -Helix -Helix -Helix -a -Helix -a -Helix -α-固定结构。 由I类生成的单层是稳定的结构,称为纤维或rodlets,II类仅产生聚集体。 I类在其序列中呈现糖基化链。这会导致α-螺旋结构的形成,从而促进有序的组件,这需要它们的稳定性和高不溶性。 原纤维可以与三氟乙酸和甲酸分离,而三乙酸可以展开蛋白质,而60%乙醇和2%十二烷基硫酸钠溶液解散了II类聚集体。I类杂菌环比II类杂菌环更扩展,从而导致不同表面的组装差异,并伴随着蛋白质结构的构象变化。在单体杂素糖基化形式中,疏水素富含β-地表结构,同时在水中组装时 - 空气界面在其结构中增加了β-单表的含量,并且与水的界面和疏水固体在界面上,以及诸如TE的杂化固体,例如TE的形成也诱导了α-α-α-α-α-α-α-elix -Helix -Helix -Helix -Helix -Helix -Helix -Helix -a -Helix -a -Helix -α-固定结构。由I类生成的单层是稳定的结构,称为纤维或rodlets,II类仅产生聚集体。I类在其序列中呈现糖基化链。这会导致α-螺旋结构的形成,从而促进有序的组件,这需要它们的稳定性和高不溶性。 原纤维可以与三氟乙酸和甲酸分离,而三乙酸可以展开蛋白质,而60%乙醇和2%十二烷基硫酸钠溶液解散了II类聚集体。I类在其序列中呈现糖基化链。这会导致α-螺旋结构的形成,从而促进有序的组件,这需要它们的稳定性和高不溶性。原纤维可以与三氟乙酸和甲酸分离,而三乙酸可以展开蛋白质,而60%乙醇和2%十二烷基硫酸钠溶液解散了II类聚集体。
非平衡效应可能会对执行热力学任务(例如制冷或热泵)的热力器的性能产生深远影响。通过量子相干性提高热力学操作的性能的可能性特别感兴趣,但需要在量子水平上对热量和工作进行足够的表征。在这项工作中,我们证明了在为三端机器供电的热储层中少量连贯性的存在,可以使组合和混合模式的外观和混合模式组合在一起,可以同时执行单个热力学任务,或者同时执行多个热力学任务。我们确定了这种具有连贯的操作模式的性能,以获得其功率和效率。在混合方案的情况下,热水浴中的一致性存在可以增加功率,同时保持高效率。另一方面,在联合政权中,出现了一种对比行为,使连贯性对功率输出和效率产生不利影响。
虽然大脑中的感觉表示取决于上下文,但尚不清楚如何在生物物理级别实现此类调制,以及如何在层次结构中进一步处理层可以为每个可能的contex-tum-tual状态提取有用的功能。在这里,我们证明了树突状n-甲基-D-天冬氨酸尖峰可以在生理约束中实施对馈送处理的上下文调节。这种神经元特定的调制措施利用了以稳定的馈电权重编码的先验知识,以实现跨环境的转移学习。在具有上下文独立的进发pefferward权重的生物物理逼真的神经元网络中,我们表明对树突分支的调节输入可以通过HEBBIAN,错误调查的学习规则解决线性不可分割的学习问题。我们还证明了表示表示的局部预测是源于不同输入的,还是来自相同输入的不同上下文调制,导致表示跨处理层的分层馈电权量的表示,以适应多种环境。
不寻常的环境或遭受损害的环境可能需要数年的时间才能收集。标记以注释测量值也可能是有限的或昂贵的,需要域专家的投入。这种不完整的数据激发了相似资产之间的共享信息;具体而言,具有全面数据(或已建立模型)的系统是否可以为那些提供不完整信息的人提供支持。从一台机器到另一种机器的知识转移概念导致了基于人群的发展(Bull等,2021; Gardner,Bull,Bull,Gosliga等,2021; Gosliga等,Gosliga等,2021)或车队监控(Zaccaria et al。,2018)。初步研究(主要)考虑系统之间相似性的序列化(Gosliga等,2021)和用于传输数据和/或模型从源到目标域的工具(Bull等,2021; Gardner,Bull,Bull,Dervilis等人,2021; Michau&Fink&Fink&Fink,2019)。这里考虑了一种替代方法,从而鉴于收集到的系统组的测量值进行了合并的分解(Dhada等,2020)。具体来说,考虑到收集的人群记录的信息,学会了一组相关的层次模型。提出了两个案例研究:对操作风电场的操作卡车舰队和风能预测的生存分析。人口级模型是使用近阶贝叶斯建模(Gelman等,2013; Wand,2009)学习的,与独立模型和两个基准相比,提供了稳健的预测和差异。多任务学习(MTL)方法(Murphy,2012; Wand,2009)自动共享相关域(即子组)之间的信息,从而使信息稀疏的资产从数据富含数据的人那里借鉴了统计强度(通过相关变量)。
Marshall Digital Scholar的心理学将为您提供免费和公开访问。它已被马歇尔数字学者的授权管理员所接受,以纳入心理学教师研究。有关更多信息,请联系zhangj@marshall.edu,beachgr@marshall.edu。
动机:脑成像遗传学研究基因型数据(例如单核多态性(SNP)和成像定量性状(QTS))之间的复杂关联。神经退行性疾病通常表现出多样性和异质性,起源于该疾病,不同的诊断组可能会带有不同的成像QT,SNP及其相互作用。稀疏的规范相关分析(SCCA)被广泛用于识别双变量基因型 - 表型关联。然而,大多数现有的SCCA方法是无监督的,导致无法识别特定于诊断的基因型 - 表型关联。结果:在本文中,我们提出了一种名为MT – SCCALR的新联合多任务学习方法,该方法吸收了SCCA和逻辑回归的优点。MT – SCCALR共同学习多个任务的基因型 - 表型关联,每个任务都集中在识别一种诊断特定的基因型 - 表型模式上。同时,MT – SCCALR不仅可以为每个诊断组选择相关的SNP和成像QT,而且还允许将多个诊断组共享的SNP选择。我们得出了一种有效的优化算法,该算法可以保证其转化为局部最佳限度。与两种最先进的方法相比,MT – SCCALR产生更好或类似的规范相关系数和分类性能。此外,它拥有比竞争对手更好的判别规范权重模式。可用性和实施:该软件可在https://github.com/dulei323/mtsccalr上公开获得。这证明了MTSCCAR在识别诊断性异构基因型 - 表型模式方面的功能和能力,这将有助于了解脑疾病的病理生理学。联系人:dulei@nwpu.edu.cn或li.shen@pennmedicine.upenn.edu补充信息:补充数据可在Bioineformatics在线获得。
在 21 世纪,尽管面临着多重任务的漩涡,女性企业家如何改变和挑战人们对职业成功的传统理解?在当今的数字世界中,需要哪些知识和技能才能专业发展并成为一名成功的企业家?阻碍女性充分发挥潜力或甚至阻止她们开始创业生涯的主要障碍是什么?有关女性创业计划、技能、特点、属性、动机和领导风格的当前文献综述(2011-2019 年),记录了成功策略和面临的障碍,结果表明情况并没有太大改变。女性企业家继续面临着多重任务的漩涡,以及缺乏资金、营销技能和支持服务,包括难以进入商业网络、技术和数字市场。尽管大量女性进入了男性专属领域,但玻璃天花板并未被打破。另一方面,发达国家和发展中国家都已认识到,女性的创业活动有助于社会经济增长,充分利用所有人力资源的潜力对于可持续发展至关重要。21 世纪的研究——就像 20 世纪后期的研究一样——继续关注创业中的性别差距以及如此重视的事业与家庭之间的平衡,同时仍认为需要进一步的研究。他们还一致认为,成功的创业需要数字技能以及创新动力。成功的企业家,或者用 Elias G. Carayannis 和 McDonald R. Stewart (2013) 创造的一个术语和概念来说,无论性别如何,“杰出的企业家”都是创新者;有远见的人;预测和塑造未来的人;采取主动行动;接受变化、风险和失败;从中吸取教训;看到别人看不到的东西,等等。因此,本研究呈现了改变和赋权的生活快照。它包括了做出过贡献的“杰出”女企业家(Carayannis & Stewart 2013)的工作和故事。现在是不是该介绍一些鼓舞人心的榜样了,尤其是那些在创业世界、蓝色经济和银色经济中表现出色的人?
Lipo Wang 新加坡南洋理工大学电气与电子工程学院 ELPWang@ntu.edu.sg 摘要 — 心理负荷可以通过脑电图 (EEG) 识别,并可用于评估用户执行不同任务时的心理努力。在这项工作中,我们设计并实施了一项与无任务、视觉任务、听觉任务和多任务表现相关的心理负荷识别实验。使用同步容量 SIMKAP 测试在 12 名受试者中诱发与多任务相关的不同程度的心理负荷。使用 Emotiv 设备收集 EEG 数据,使用功率、统计、分形维数 (FD) 特征与支持向量机 (SVM) 和 k-最近邻 (k-NN) 分类器进行处理和分析。当使用统计和 FD 特征组合时,使用 SVM 对 2 个类的最佳准确率为 90.39%,对 4 个类的最佳准确率为 80.09%。所提出的算法可以应用于心理负荷监测。