征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
一个例子是棋盘游戏《外交》,玩家在游戏中与其他玩家协商非约束性联盟。要取得成功,AI 代理需要足够了解彼此,以识别自己的利益是否与其他玩家的利益一致。他们必须开发一个共同的词汇来传达他们的意图。尽管可能存在撒谎的动机,但能够进行可信的交流对他们大有裨益。他们必须克服对背叛的相互恐惧,以便达成一致并执行共同有益的计划。他们甚至可能学会建立与遵守协议有关的规范。为了提高这些合作技能,研究人员设计了外交的变体,以改变这些挑战的难度,例如引入商定的简单词汇或允许具有约束力的承诺。
涉及先天免疫细胞的炎症失调,特别是单核细胞/巨噬细胞谱系,是导致Duchenne肌肉营养不良症(DMD)发病机理的关键因素。受过训练的免疫力是一种抗感染的进化古老的保护机制,其中表观遗传和代谢改变赋予了先天免疫细胞对各种刺激的非特殊性过度反应性。在DMD动物模型(MDX小鼠)中的最新工作表明,巨噬细胞表现出训练有素的免疫力的基本特征,包括存在先天免疫系统“记忆”。通过骨髓移植对训练的表型对健康的非疾病小鼠的表观遗传变化和耐用的可传播反映了后者。机械上,建议通过受损的肌肉受损的因素在骨髓水平上诱导了4个调节的,带有样本的先天免疫的记忆样能力,从而夸大了促进性和抗流量的基因的上调。在这里,我们提出了一个概念框架,以参与训练有素的免疫力参与DMD发病机理及其作为新的治疗靶点的潜力。
在包括垂体和下丘脑在内的许多组织中发现干细胞已经提出了干细胞再生和治疗人类疾病的潜力。然而,知识的显着差距仍然存在于我们对调节这些干细胞向所需细胞类型的整个分子机制的理解中,从而限制了基础科学对人类疗法的转化性。本研究主题中的文章介绍了新的数据,并回顾了人类遗传研究,人体器官模型和小鼠模型的最新发现,以提高我们对下丘脑 - 垂体干细胞调节的理解。下丘脑的中位数是大脑和垂体之间的临界界面。除了神经元外,它还包含多种非神经细胞类型,包括少突胶质细胞前体和干细胞样B 2- tanycytes。在Clayton等人中。作者讨论了有关这些各种细胞类型及其调节机制的最新发现,包括饮食在tanycytes上的作用,以及未来的问题,这些问题仍然是我们继续了解中位数在神经内分泌系统中的核心作用。基因组测序技术的改善继续增加了与下丘脑 - 垂体疾病相关的遗传变异数量。功能研究随后可以证明基因调节干细胞分化为分化细胞的机制。Bando等人。Bando等人。在马丁内斯 - 马耶和佩雷斯·米兰(Perez-Millan)中,作者回顾了G偶联受体ProKR2中描述的患者的景观变化,这些患者最初被发现在Kallman综合征患者中引起下丘脑表型。最近PROKR2变体与垂体疾病有关,导致作者考虑在调节垂体激素细胞规范中的直接作用。作者回顾了最近描述与垂体疾病相关的新基因的病例,这些疾病需要功能研究以确定破坏激素产生的机制,包括可能参与垂体
我非常感谢Bharti博士在CCRAS领导的团队所做的努力,由Sarada Ota博士,Renu Singh博士和Lalita Sharma博士组成,他们在我的指导下白天和晚上在我的指导下塑造了这份文档,并使这一长期的梦想成为现实。我感谢10个中心的所有调查人员,他们帮助了问卷的临床验证。我也感谢来自各个知名机构的著名专家,他们在各种咨询会议上提出了宝贵的建议,以取得富有成果的结果,尤其是浦那的Shashi Kant Sathey博士; Baldev Dhiman教授,V.C。kurukshetra ayush大学;教授kar,ims,bhu;新德里AIIA的Mahesh Vyas教授;帕万教授Godatwar,尼亚,斋浦尔。T. Saketh Ram博士对他在开发PAS(Prakriti评估软件)方面的一贯努力需要高度赞赏。我还要感谢CCRAS的其他官员 - Sunita博士,Shruti博士和V.K.博士Lavaniya不时提供了宝贵的投入,Rakesh Rana和Richa Singhal博士提供了统计支持。
认知和神经行为问题是极度早产儿最严重的不良后果之一。这种神经发育障碍可以通过非药物干预来缓解,例如创造性音乐疗法 (CMT),这是一种互动的、以资源和需求为导向的方法,可提供个人社交和音乐刺激。目的是测试一项研究 CMT 作用的研究的可行性,并通过 MRI 测量 CMT 对结构和功能性大脑连接的短期和中期影响。在这项随机对照的临床试点可行性试验中,82 名婴儿被随机分配到 CMT 或标准护理。一名经过专门培训的音乐治疗师通过婴儿指导的摇篮曲式哼唱和歌唱来提供 CMT。为了测试 CMT 对大脑结构和功能的短期影响,获取了扩散张量成像数据和静息状态功能成像数据。尽管随机分组后,对照组中父母有中等程度的拒绝,但仍实现了临床可行性。40 名婴儿作为 MRI 分析的最终队列。结构性脑连接似乎受到 CMT 的中等影响,结构性连接组学分析显示,只有后扣带皮层的整合度有所提高。滞后静息态 MRI 分析显示,接受 CMT 治疗的婴儿丘脑皮层处理延迟更低、功能网络更强、主要在左前额叶、辅助运动和颞下脑区的功能整合度更高。这项试验提供了独特的证据,表明 CMT 对早产儿高阶认知、社会情感和运动功能网络的功能性脑活动和连接性具有有益影响。我们的结果表明,CMT 有可能改善早产儿的长期神经发育结果。
P.Viridis Parana-Brazil PP702447.1 608-P.Viridis Kochin-India JN179068.1 650(Gilg等,2013) (Gilg等,2013) DQ917612.1 617(Wood等,2007)P.Viridis India Southern DQ917586.1 617(Wood等,2007)P.Viridis Philippines DQ917599.1 617(Wood等,2007,2007年) Luanda-Gangola KC692001.1 614(Cunha等,2014)P。Perna Punta d'Ovo-Mozambique KC692009.1 614(Cunha等,2014)P。Perna swakopmund-nemibia-nemibia kc692005.1 614(CC692005.1 614(Cunha et al。 (Cunha等,2014)P。Perna Gans Bay-South Africa KC691990.1 614(Cunha等,2014)P。Bizerte-Tunisia KC691986.1 614(Cunha等,2014,2014)P。非洲DQ917618.1 617(Wood et al wood et aul et p。 P. Perna Santa Catarina-Brazil DQ917594.1 617(Wood等,2007)P。Perna Sao Paulo-Brazil DQ917592.1 617(Wood等,2007)P。Canalicus houhora houhora houhora new new n-new n-new new Zealand dq917607.1 617(Wood1 7 Z17) Al。,2007)P。Canaliculus gore-new新西兰DQ917608.1 617(Wood等,2007)P。Canalia New Zealand DQ917609.1 617(Wood等,2007) Zealand DQ917614.1 620(Wood等,2007) div>
I. Chimborazo的理工高中(ESPOCH),厄瓜多尔。 div>II。 div>武装部队,埃斯佩,厄瓜多尔。 div>iii。 div>厄瓜多尔UTA的Ambato技术大学。 div>iv。 div>Vicente Leon Technology Institute,厄瓜多尔。 div>
肌肉骨骼和免疫系统在解剖空间和功能中错综复杂,免疫细胞和肌肉骨骼组织之间的串扰,包括骨骼,软骨,肌肉和肌腱,对于正常发育和稳态至关重要(1-4)。这种关系在受伤和修复过程中也至关重要,对于启动和解决损伤诱导的组织反应并改变了细胞外基质组成和周转,需要进行炎症和免疫细胞,同样调节免疫细胞的接合(5-9)。在过去的十年中,越来越多的证据表明,由衰老和代谢功能障碍引起的免疫细胞群体的改变是在慢性肌肉骨骼疾病和急性损伤中看到的受损的组织修复反应受损的,其中包括那些影响滑膜关节的那些(例如,骨骼炎),borse hol(e.g. g。 (例如,肌肉减少症)和肌腱/韧带(例如肌腱病,破裂)。由于增加的护理成本和工作损失,肌肉骨骼状况的负担在全球范围内继续增加,影响了患者的生活质量,独立性以及健康,社会和经济系统。根据世界卫生组织(10)的数据,全球有超过17亿人患有肌肉骨骼状况,并发现了柳叶刀(Lancet)的全球疾病负担研究2019年(11 - 13)的发现。腰痛是导致这种总负担的主要因素,而骨关节炎(OA)显示出这些疾病的迅速增加。尽管在过去十年中在治疗骨质疏松症方面取得了进步,但椎间盘椎间盘退化(IVDD),OA以及许多其他人的疾病发病机理缺乏疾病的疾病,缺乏疾病改良的治疗疗法。在理解IVDD和OA诸如IVDD和OA诸如OA进展之类的疾病方面的进展揭示了在这些条件下炎症失调的重要作用;但是,在将其作为治疗策略动员之前,必须解决一些重要的问题。在免疫学的边界 - 炎症部分研究主题;肌肉骨骼健康,衰老和疾病的免疫系统和炎症;我们提出了