†最后一位联合作者摘要Emery-Dreifuss肌肉营养不良1型(EDMD1)是由EMD基因突变引起的罕见遗传疾病,该突变编码编码核包膜蛋白Emerin。尽管了解了疾病的遗传基础,但肌肉和心脏发病机理的分子机制仍然难以捉摸。进展受患者衍生样品的可用性有限的限制,因此迫切需要人类特异性的细胞模型。在这项研究中,我们介绍了诱导多能干细胞(IPSC)系的产生和表征,这些细胞(IPSC)系来自携带EMD突变的EDMD1患者,这些突变导致EMD突变,这些突变与健康供体的IPSC一起导致截断或缺失。患者特异性的IPSC表现出稳定的核型,保持适当的形态,表达多能标记,并证明将分化成三个细菌层的能力。为模型EDMD1,这些IPSC被分化为肌源性祖细胞,成肌细胞和多核肌管,这些肌管代表了肌发生的所有阶段。每个发育阶段都通过特定于阶段的标记的存在来验证,从而确保模型的准确性。我们提出了第一个基于IPSC的体外平台,该平台捕获了肌发生过程中EDMD1发病机理的复杂性。该模型可以显着有助于理解疾病机制,并为EDMD1制定靶向的治疗策略。
医学界一直致力于深入了解影响全球数百万女性的分娩创伤。母体病变的诊断可能具有挑战性,检查费用也很高。为了更好地理解盆底肌肉 (PFM) 损伤的机制,生物力学模拟可能是一种有价值的工具。然而,利用有限元法 (FEM) 进行模拟可能是一个耗时的过程。为了解决这个问题,本研究旨在通过在 FEM 模拟数据上训练 ML 算法来开发一个机器学习 (ML) 框架,以预测分娩期间 PFM 的压力。为了生成用于 ML 算法训练的数据集,使用不同的材料特性进行分娩模拟以表征 PFM。采用了四种 ML 算法,即随机森林 (RF)、极端梯度提升 (XGBT)、支持向量回归 (SVR) 和人工神经网络 (ANN),考虑两种情况:(1) 肌肉最大拉伸水平的应力预测,以及 (2) 胎儿下降的多个水平。结果表明,ANN 在前者中表现最佳,平均绝对误差 (MAE) 为 0.191 MPa。在后者中,XGBT 对胎儿下降 20 和 35 毫米的误差较低,MAE 值分别为 0.002 和 0.028 MPa。然而,ANN 对 50 和 65 毫米的预测效果更好,MAE 值分别为 0.214 和 0.187 MPa。本研究首次尝试将基于 FEM 的 ML 算法与分娩模拟结合使用,以在常规临床程序中获得近乎实时的预测。
脊髓损伤(SCI)是一种改变生活的疾病,会导致运动,感觉和自主性功能障碍,导致身体障碍和残疾(1)。SCI被归类为不完整的,当某些感觉或运动功能(或两者都保留在s骨段中,低于受伤的水平,或完成时,当所有电动机和感觉函数都远离损伤部位(包括sacrain segments)时,不存在(2,3)。在受伤后的前6至9个月内,自发恢复最为明显(4)。具有综合的物理和职业疗法在康复中,SCI不完整的患者可以恢复功能(5)。在第一年后,在SCI的慢性阶段,常规疗法主要旨在改善先前获得的功能。但是,训练也可以改善手臂和手动肌肉力量和功能(4,6)。对于四方人来说,恢复适合日常活动的手功能是其健康和福祉中最关键的方面(1,7)。这突出了对创新治疗方法的需求。
CRISPR 基因编辑是一种治疗遗传疾病的变革性技术,但递送限制在很大程度上限制了其治疗应用到肝脏靶向和体外治疗。在这里,我们介绍了 NanoCas 的发现和工程设计,这是一种超紧凑型 CRISPR 核酸酶,能够将 CRISPR 在体内的作用范围扩展到肝脏靶标之外。我们通过实验筛选了在宏基因组数据中发现的 176 个超紧凑型 CRISPR 系统,并应用蛋白质工程方法来提高 NanoCas 的编辑效率。当通过腺相关病毒 (AAV) 载体给药时,优化的 NanoCas 在体内对各种细胞系统和组织表现出强大的编辑能力。尽管 NanoCas 的大小约为传统 CRISPR 核酸酶的三分之一,但仍能实现这一点。在概念验证实验中,我们观察到在小鼠模型中使用优化的 NanoCas 进行稳健的编辑,该模型靶向参与胆固醇调节的基因 Pcsk9,并靶向肌营养不良蛋白中的外显子剪接位点以解决杜氏肌营养不良症 (DMD) 突变。我们进一步在非人类灵长类动物 (NHP) 体内测试了我们的 NanoCas 系统的有效性,结果发现肌肉组织中的编辑水平超过 30%。NanoCas 体积小巧,结合强大的核酸酶编辑功能,为体内非肝脏组织的单 AAV 编辑打开了大门,包括使用较新的编辑模式,例如逆转录酶 (RT) 编辑、碱基编辑和表观遗传编辑。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 28 日发布。;https://doi.org/10.1101/2025.01.02.630345 doi:bioRxiv 预印本
骨骼肌收缩肌纤维的形成是一个复杂过程,若受到干扰则会导致肌营养不良。在此,我们提供了三种不同斑马鱼突变体的 mRNAseq 数据集,这些突变体在胚胎发生过程中影响肌肉组织。这些突变体包括肌球蛋白折叠伴侣 unc45b (unc45b/)、热休克蛋白 90aa1.1 (hsp90aa1.1/) 和乙酰胆碱酯酶 (ache/) 基因。在受精后 72 小时 (hpf) 对这三个突变体进行了重复实验中的转录组分析,并对 unc45b/ 进行了另外两个发育时间 (24 hpf 和 48 hpf)。通过层次聚类分析了总共 20 个样本以查找差异基因表达。本研究的数据支持 Etard 等人的观察结果。 (2015) [1] ( http://dx.doi.org/10.1186/s13059-015-0825-8 ) 肌球蛋白折叠失败会激活骨骼肌中独特的转录程序,该程序与应激肌肉细胞中诱导的程序不同。 & 2016 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可协议开放获取的文章 ( http://creativecommons.org/licenses/by/4.0/ )。
在运动网络中,运动抑制可由感觉运动 mu 节律 (8-12Hz) 或 beta 爆发 (13-30Hz) 驱动。在本研究中,我们旨在调查 mu 或 beta 活动是否支持有效的预期抑制,这反映在肌电图 (EMG) 活动的减少中。为了测试这一点,我们在 16 名执行双手负重举重任务 (BLLT) 的成年人中记录了脑磁图 (MEG),参与者用一只手支撑另一只手举起重物。在预期卸载时,支撑臂的肘屈肌受到抑制以防止肘部偏转。我们观察到,当屈肌抑制发生在卸载开始前约 30 毫秒时,会发生最佳姿势稳定。在此时间间隔内较强的 EMG 抑制与高伽马功率 (90-130Hz) 呈负相关,反映神经兴奋性降低,与内侧辅助运动区 (SMA) 的高 beta 功率呈正相关。相反,在 mu 范围(8-12 Hz)内未观察到显著相关性。同时,高 beta 和高 gamma 功率呈负相关。中介分析证实,gamma 功率显著介导 beta 功率与 EMG 抑制之间的关系。使用相位斜率指数的 beta 爆发概率和定向连接分析表明,高 beta 爆发从中部前额皮质 (mPFC) 和肘部相关的初级运动皮质 (M1) 传输到 SMA。我们的研究结果表明,在自愿卸载任务中,最佳时间的预期肌肉抑制是由 SMA 内兴奋性降低驱动的,这可能是由源自 mPFC-M1-SMA 网络的高 beta 爆发促进的。
成年肌纤维的收缩特性由其肌球蛋白重链异构体含量决定。在这里,我们通过 snATAC-seq 鉴定出重组快速肌球蛋白基因的位点上有一个 42 kb 的超级增强子。通过 4C-seq,我们发现活性快速肌球蛋白启动子通过 DNA 环路与该超级增强子相互作用,导致每个细胞核中单个启动子的激活。包括超级增强子的位点彩虹小鼠转基因模型重现了成年快速肌球蛋白基因的内源性时空表达。通过 CRISPR/Cas9 编辑原位删除超级增强子表明其在控制相关快速肌球蛋白基因方面发挥了重要作用,而删除位点上的两个快速肌球蛋白基因表明启动子对共享超级增强子存在积极竞争。最后,通过破坏快速肌球蛋白的组织,我们发现肢体骨骼肌内的位置异质性,这可能是某些肌病中选择性肌肉易受损伤的原因。
1 肌间脂肪的血浆蛋白质组学分析将老年人的肌肉完整性与处理速度联系起来。 3 4 作者 5 Toshiko Tanaka 1 *、Caterina Rosano 2 *、Xiaoning Huang 3、Qu Tian 1、Bennett A. Landman 4、Ann Z 6 Moore 1、Iva Miljkovic 2、Andrew Perry 5、Sadiya Khan 3、Ravi Kalhan 6、John Jeffrey Carr 7、James 7 G. Terry 7、Kristine Yaffe 8、Keenan Walker 9、Julián Candia 1、Luigi Ferrucci 1 8 9 1. 美国国立卫生研究院国家老年学分部纵向研究科,251 10 Bayview Boulevard,巴尔的摩,马里兰州,21224,美国 11 2. 匹兹堡大学公共卫生学院流行病学系,3550 12 Terrace Street,匹兹堡,宾夕法尼亚州,15261,美国 13 3. 范伯格医学院医学系心脏病学分部,14 西北大学,676 N Saint Clair,芝加哥,伊利诺伊州,60611 15 4. 范德堡大学计算机科学系,1211 Medical Center Drive,16 纳什维尔,田纳西州,37232,美国 17 5. 范德堡转化和临床心血管研究中心,18 范德堡大学医学院,2525 West End Avenue,纳什维尔,田纳西州,37203,美国 19 6. 西北大学范伯格医学院医学系肺部和重症监护医学分部,20 北圣克莱尔街 21 芝加哥,伊利诺伊州,60611,美国 22 7. 范德堡大学学院电气和计算机工程系23 医学中心,纳什维尔,2301 Vanderbilt Place,TN,37235,美国 24 8. 加州大学旧金山分校威尔神经科学研究所,旧金山,1651 4th St,CA,94158,美国 26 9. 美国国家老龄研究所行为神经科学实验室,内部研究计划,巴尔的摩,251 Bayview Boulevard,MD 21224,美国 28 29 *共同第一作者 30 31 通讯作者:Toshiko Tanaka 博士 32 tanakato@mail.nih.gov 33 251 Bayview Boulevard,巴尔的摩,马里兰州 21224 34 35 36 37 38 39 40 41 42 43 44 45 46
高血糖通过 PI3Kγ 依赖的缺陷自噬加剧平滑肌泡沫细胞的形成 Labrana H 1* ., Wahart A 1* ., Cormier K 1 ., Solinhac R 1 ., Swiader A 1 ., Mentouri I 1 ., Smirnova N 1 ., Malet N 1 ., Gayral S 1 ., Ramel D 1 ., Auge N 1 **., Laffargue M 1 ** 1 I2MC,法国国家健康与医学研究中心 (INSERM) U1297,法国 *,** 同等贡献