在12项临床研究中评估了PenMenvy的安全性,其中总共3,718名参与者至少接受了一剂penmenvy。研究1的参与者(10至25岁)和研究2(15至25岁)计划根据认可的给药时间表接受PenMenvy(相隔6个月的2剂)。其他研究的参与者可能会根据未经批准的给药时间表接受PenMenvy。在这12项研究中,2,969名参与者至少接受了1剂的Bexsero(脑膜炎球菌B组疫苗)和361名参与者接受了一剂Menveo [脑膜炎球菌(A脑膜炎球菌(A,C,C,Y和W-135))。在整个研究中,中位年龄为16岁,男性占46%,有86%的参与者为白人,6%是黑人,4%为亚洲,而其他种族群体则为4%。在这些研究中,有13%的参与者是西班牙裔。大约35%的参与者来自美国
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
引言Duchenne肌营养不良症(DMD)是由编码细胞内蛋白质肌营养不良蛋白的基因突变引起的,是一种严重的X染色体染色体连接疾病,其特征是渐进的肌肉无力和变性。除了特征良好的骨骼肌病理学外,DMD还与相关的心脏并发症有关(Shirokova和Niggli,2013; Spurney,2011)。在其中,心律不齐和扩张的心肌病的发展极大地有助于与该疾病伴随的发病率和死亡率。在DMD背景下,导致心脏并发症的机制在很大程度上未知,这增加了对DMD动物模型的基础研究工作的需求。在使用的DMD动物模型中(McGreevy等,2015; Wells,2018),MDX小鼠是最著名的,最广泛使用的。它在鼠DMD基因的外显子23中具有过早的停止突变,因此未能翻译功能性全长肌营养不良蛋白(Sicinski等,1989)。尽管MDX小鼠是DMD的有用的遗传和生化模型,但仅部分模仿了人类疾病。因此,与DMD患者相比,MDX小鼠的寿命略有缩短,并且没有显示出明显的肌肉营养不良症状(Grady等,1997; Gutpell等,2015)。此外,MDX小鼠的心脏异常仅出现晚期(Quinlan等,2004),与DMD患者发生的心肌病相比是温和的(Grady等,1997; Janssen等,2005)。这质疑该动物模型研究心脏病表型的适用性。2014年,Larcher及其同事使用转录激活剂样效应子核酸酶靶向DMD基因的外显子23的发展肌营养不良蛋白缺陷型大鼠的发展(Larcher等,2014)。在这些DMD MDX大鼠中,心肌受坏死和纤维化的影响,并显示出进行性扩张性心肌病的迹象。超声心动图显示出明显的同心重塑和舒张功能的改变。基于这些发现,作者认为,DMD MDX大鼠中心脏病表型在DMD患者中观察到的,并且该动物模型可能适用于临床前DMD研究(Larcher等,2014)。该研究的弱点 - 实际关注骨骼肌肉 - 是DMD MDX大鼠的心脏病表型没有详细表征。例如,超声心动图仅对3个月大但不老的大鼠进行。此外,作者(Larcher等人,2014年)没有研究可能发生的血管并发症,例如增强的动脉僵硬度(Ryan等,2017)和内皮细胞(EC)功能障碍(Miike等,1987),这也可能有助于DMD患者的心脏病概念型的发展。最后,在细胞水平上的功能研究(即dmd MDX心肌细胞)尚未进行。考虑到缺乏证据,本研究的目的是提供处理编辑器的详细表征:Monica J.正义获得了2020年10月8日; 2020年12月23日接受
神经医学和肌肉障碍系,医学中心 - 弗雷堡大学,弗雷堡大学,弗雷堡,德国B神经肌肉中心,儿科和青少年医学系,维也纳,维也纳,奥地利C clinic favoriten
Using immunoassays to unravel the inflammatory neuropathies A/Prof Simon Rinaldi, Nuffield Dept of Clinical Neurosciences , University of Oxford Myasthenia gravis - changes in demographics, features and management over the last decades A/Prof Isabel Leite, Nuffield Dept of Clinical Neurosciences , University of Oxford Wrap-up and closing Dr Sithara Ramdas, Oxford University Hospitals
Dr Ashirwad Merve Consultant Neuropathlogist, NHNN and GOSH 14:00 Myopathy neuropathy overlap syndromes Dr Alex Rossor, Consultant Neurologist, Queen Square CNMD and Guy's and St Thomas' NHS Foundation Trust 14:30 Complex channelopathy cases Chair: Professor Mike Hanna, Director, UCL IoN Dr Vino Vivekanandam, Consultant Neurologist, NHNN 15:30休息
线粒体疾病[经过董事会认证的医学遗传学家,发育小儿或神经科医生; o高度怀疑基于病史,家族史,实验室或其他临床检查的线粒体疾病; o临床表现不支持使用单个基因或靶向遗传分析; o个体具有与线粒体疾病一致的临床特征,例如以下条件之一:近端无力;或肌肉痉挛,疲劳或运动不耐受;或
Aquila Digital Community将本论文/论文带给您免费和开放访问。已被Aquila数字社区的授权管理员接受了将其纳入博士学位项目。有关更多信息,请联系aquilastaff@usm.edu。
1 肌间脂肪的血浆蛋白质组学分析将老年人的肌肉完整性与处理速度联系起来。 3 4 作者 5 Toshiko Tanaka 1 *、Caterina Rosano 2 *、Xiaoning Huang 3、Qu Tian 1、Bennett A. Landman 4、Ann Z 6 Moore 1、Iva Miljkovic 2、Andrew Perry 5、Sadiya Khan 3、Ravi Kalhan 6、John Jeffrey Carr 7、James 7 G. Terry 7、Kristine Yaffe 8、Keenan Walker 9、Julián Candia 1、Luigi Ferrucci 1 8 9 1. 美国国立卫生研究院国家老年学分部纵向研究科,251 10 Bayview Boulevard,巴尔的摩,马里兰州,21224,美国 11 2. 匹兹堡大学公共卫生学院流行病学系,3550 12 Terrace Street,匹兹堡,宾夕法尼亚州,15261,美国 13 3. 范伯格医学院医学系心脏病学分部,14 西北大学,676 N Saint Clair,芝加哥,伊利诺伊州,60611 15 4. 范德堡大学计算机科学系,1211 Medical Center Drive,16 纳什维尔,田纳西州,37232,美国 17 5. 范德堡转化和临床心血管研究中心,18 范德堡大学医学院,2525 West End Avenue,纳什维尔,田纳西州,37203,美国 19 6. 西北大学范伯格医学院医学系肺部和重症监护医学分部,20 北圣克莱尔街 21 芝加哥,伊利诺伊州,60611,美国 22 7. 范德堡大学学院电气和计算机工程系23 医学中心,纳什维尔,2301 Vanderbilt Place,TN,37235,美国 24 8. 加州大学旧金山分校威尔神经科学研究所,旧金山,1651 4th St,CA,94158,美国 26 9. 美国国家老龄研究所行为神经科学实验室,内部研究计划,巴尔的摩,251 Bayview Boulevard,MD 21224,美国 28 29 *共同第一作者 30 31 通讯作者:Toshiko Tanaka 博士 32 tanakato@mail.nih.gov 33 251 Bayview Boulevard,巴尔的摩,马里兰州 21224 34 35 36 37 38 39 40 41 42 43 44 45 46
这项研究评估了人工智能(AI)干预措施在促进具有神经肌肉条件的老年人的数字包含方面的潜力,与可持续发展目标(SDG)4保持一致,以进行公平教育。使用混合方法方法,我们将数字素养和参与度的定量度量与对用户体验的定性见解相结合。这些发现揭示了数字素养(p <0.001)和参与度指标(P <0.01)的统计学意义,突出了适应性学习平台,虚拟现实应用程序以及针对该人群量身定制的交互式移动工具的变革潜力。参与者报告了增强的信心和赋权,强调了以用户为中心的设计和可访问性在技术开发中的重要性。该研究表现出短期益处,但它承认局限性,包括较小的样本量(n = 30)和缺乏纵向数据。未来的研究应探索可扩展的实施和长期影响,特别是对于更广泛的人口组和其他残疾类型。这些见解为旨在减少数字鸿沟和促进包容性教育的教育者,开发商和政策制定者提供了可行的建议。