COVID-19大流行展示了人类免疫系统和SARS-COV-2之间的共同进化种族,反映了进化生物学的红皇后假设。免疫系统产生靶向SARS-COV-2峰值蛋白的受体结合结构域(RBD)的中和抗体,对于宿主细胞的浸润至关重要,而病毒会逃避抗体识别。在这里,我们建立了一个合成的协同进化系统,该系统结合了抗体和RBD变体库的高通量筛选与蛋白质诱变,表面显示和深层测序。此外,我们训练一种蛋白质语言机器学习模型,该模型可以预测抗体逃离RBD变体。合成进化揭示了中和抗体和SARS-COV-2变体的拮抗和补偿性突变轨迹,从而增强了对这种进化冲突的理解。
胆汁淤积性肝病的病因是复杂的,临床表现非特异性,生化异常主要以碱性磷酸酶升高(ALP)和谷氨酸转肽酶(GGT)为特征。由于缺乏特定症状和不同原因,诊断带来了某些挑战。在这里,我们提出了一个肝硬化的病例,具有未知病因的主要胆固醇特征。尽管有多次全面的常规病因筛查和肝活检,但诊断尚不清楚。随后的整个外显子组测序表明,由与ZFYVE19基因突变有关的家族性胆汁淤积引起的肝肝硬化的诊断。通过此案例报告分析,我们旨在扩大未知病因胆固性肝病的诊断方法,准确确定原因并迅速进行干预。
CRISPR/Cas9 产生的双链断裂的致突变结果取决于切割两侧的序列和细胞 DNA 损伤修复。这些特征之间的相互作用在很大程度上尚未得到探索,这限制了我们理解和操纵结果的能力。在这里,我们测量了 18 个修复基因的缺失如何改变小鼠胚胎干细胞中 2,838 个合成靶序列中 Cas9 双链断裂产生的 83,680 个独特突变结果的频率。这项大规模调查使我们能够以无偏见的方式对结果进行分类,从而产生有关双链断裂修复新模式的假设。我们的数据表明,Prkdc(DNA-PKcs 蛋白)和 Polm(Polμ)在创建与 Cas9 切口近端核苷酸(相对于原间隔区相邻基序 (PAM))相匹配的 1bp 插入方面发挥着特殊作用,Nbn(NBN)和 Polq(Polθ)在创建不同的删除结果方面发挥着不同的作用,并且存在一类独特的单向删除结果,这些结果既依赖于末端保护基因 Xrcc5(Ku80),也依赖于切除基因 Nbn(NBN)。我们利用修复环境中可重复变异的知识,建立了 Cas9 断裂诱变结果的预测模型,该模型优于当前标准。这项工作提高了我们对 DNA 修复基因功能的理解,并为更精确地调节 CRISPR/Cas9 产生的突变提供了途径。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
b'由于 TGF- 信号在免疫稳态中的作用,其紊乱是炎症性疾病的根本原因。许多慢性炎症性疾病都以纤维化为特征,纤维化与细胞外基质的过度沉积同时发生,导致受影响器官的正常功能丧失。TGF- 家族还通过激活成纤维细胞向肌成纤维细胞表型转变,在纤维化的启动和进展中发挥着重要作用。在肿瘤发生的早期阶段,TGF- 可能通过诱导肿瘤前细胞的细胞停滞和凋亡而充当肿瘤抑制因子。然而,在后期,当癌细胞获得致癌突变,从而脱离 TGF- 肿瘤抑制因子功能时,它会通过刺激肿瘤细胞进行上皮\xe2\x80\x93间质转化 (EMT) 而成为肿瘤促进剂,从而增加迁移和侵袭。 TGF- 在肿瘤微环境内的免疫抑制中也发挥着核心作用,最近的研究揭示了它在肿瘤免疫逃避和癌症免疫治疗反应不佳中的作用。'
进化是小步前进还是大步前进?进化的可重复性如何?进化过程受到多大限制?回答进化生物学中这些长期存在的问题对于理解现存生物多样性如何进化以及预测未来生物和生态系统如何应对不断变化的环境都是必不可少的。了解自然种群表型多样化和物种形成的遗传基础是正确回答这些问题的关键。基因组测序技术的飞跃使得研究遗传结构以及识别自然种群中适应和物种形成的变异位点变得越来越容易。此外,基因组编辑技术的最新进展使得研究自然种群生物中每个候选基因的功能成为可能。在本文中,我们讨论了这些最新技术进步如何使分析致病基因和突变成为可能,以及这种分析如何帮助回答长期存在的进化生物学问题。本文是主题期刊“适应和物种形成的遗传基础:从位点到致病突变”的一部分。
理论上,将冰岛突变引入阿尔茨海默病高风险人群的基因组中可以预防或减缓疾病的进展。“不幸的是,我们无法回到过去修复导致神经元死亡的损伤,”研究人员说。“因此,这种治疗方法特别适合受遗传性疾病影响的家庭,这种疾病表现为 35 至 40 岁之间的记忆问题。如果成功,它还可能用于治疗最常见的阿尔茨海默病患者,这种疾病发生在 65 岁以后,是疾病的早期迹象。”
KHK 是果糖代谢的限速酶之一,对 NAFLD/NASH、T2D 和其他果糖介导的代谢疾病具有治疗意义,目前有两种药物处于 II 期临床阶段(ALN-KHK 和 PF-06835919)。CIDEB 在维持全身脂质稳态和能量代谢方面起着重要作用,阻断 CIDEB 表达可能有助于预防或治疗 NASH 和相关疾病,但目前尚无用于此目的的药物处于临床试验阶段,尽管 Regeneron 已与 Alnylam 合作开发一种沉默 CIDEB 基因的 siRNA 治疗候选药物。
摘要 生物体某一分支中某一性状的快速进化可以用自然选择的持续作用或高突变方差(即在自发突变下发生变化的倾向)来解释。高突变方差的原因仍然难以捉摸。在某些情况下,快速进化取决于一个或几个具有短串联重复序列的基因座的高突变率。在这里,我们报告了隐杆线虫外阴前体细胞中进化最快的细胞命运,即 P3.p。我们识别并验证了 P3.p 高突变方差的因果突变。我们发现这些位置不表现出任何高突变率的特征,分散在整个基因组中,相应的基因属于不同的生物途径。我们的数据表明,广泛的突变靶标大小是高突变方差和相应的快速表型进化率的原因。