(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月25日发布。 https://doi.org/10.1101/2024.01.25.577271 doi:Biorxiv Preprint
a 海德堡大学医院胸腔肿瘤科、国家肿瘤疾病中心 (NCT)、海德堡国家肿瘤中心 (NCT Heidelberg),由 DKFZ 和德国海德堡大学医院合作成立 b 海德堡转化肺研究中心 (TLRC),德国肺研究中心 (DZL) 成员,德国海德堡 c 洛文斯坦肺科诊所、德国洛文斯坦胸部肿瘤科 d 德国柏林福音肺科诊所呼吸医学科 e 德国柏林埃米尔冯贝林赫利奥斯医院肺病学科 f 德国慕尼黑大学医院第五医学科 g 柏林夏洛特医学大学传染病和呼吸医学科,柏林自由大学和洪堡大学的企业成员h 德国海德堡大学医院病理研究所,海德堡,德国 i 德国斯图加特罗伯特博世肿瘤诊断中心 (RBCT) j 德国奥格斯堡大学医学中心血液学/肿瘤学系,作为 BZKF(巴伐利亚癌症研究中心)的一部分,以及德国弗莱堡大学医学中心医学 I 系,弗莱堡大学医学院 k 德国奥格斯堡大学医学院病理学系,奥格斯堡,德国,巴伐利亚癌症研究中心 (BZKF) 的一部分 l 德国埃斯林根医院心脏、血管和肺病学诊所 m 德国格罗 ß 汉斯多夫肺根诊所肺病学系,格罗 ß 汉斯多夫,德国(DZL),德国大汉斯多夫 o 慕尼黑综合肺病学中心(CPC-M),德国肺脏研究中心(DZL)成员,德国慕尼黑
非小细胞肺癌经常在晚期诊断出来,许多患者仍接受经典化学疗法治疗。化学疗法的非选择性通常会导致严重的骨髓抑制。先前的研究表明,蛋白质编码突变无法完全解释骨髓压机的易感性。在这里,我们研究了增强子突变在骨髓抑制易感性中的可能作用。我们生成了三种用卡泊蛋白或吉西他滨处理的三种血管茎的转录组和启动子相互作用图(使用HICAP)。使用公开可用的增强剂数据集的优势,我们使用表观遗传学CRISPR技术验证了硅和活细胞中的HICAP。我们还开发了一种用于相互作用分析和检测差异相互作用基因的网络方法。差异相互作用分析提供了有关相关基因和骨髓抑制途径的其他信息,与散装水平的差异基因表达分析相比。此外,我们表明,与不同水平相关的骨髓抑制水平相关的变体,具有差异相互作用基因的增强子。中心,我们的工作代表了非编码突变的函数注释的整合转录组和基因调节数据集分析的一个突出例子。
癌症治疗中的个性化医学旨在根据癌症患者的遗传序列进行独特的治疗,与传统方法相比,它是一种更有效的方法,与传统方法相比,涉及以相同的一般方式治疗每种类型的癌症。但是,个性化治疗需要一旦促成癌症相关的基因进行分类,这是一项高度劳动密集型且耗时的任务,对于病理学家来说,使个性化医学在全球范围内采取了缓慢的进步。在本文中,我们提出了一种智能多级分类系统,该系统结合了自然语言处理(NLP)技术和机器学习算法,以使用基于文本的医学文献中的证据自动对临床上可行的遗传突变进行自动分类。从纪念斯隆·凯特林癌症中心获得了分类器的训练数据集,并将随机森林算法与TF-IDF一起使用,以进行特征提取和截短的SVD,以减少尺寸。结果表明,所提出的模型在准确性和精度得分方面优于先前的研究,精度得分约为82%。该系统有可能彻底改变癌症治疗并导致癌症治疗的显着改善。
在2023年,大肠癌(CRC)是最诊断出的恶性肿瘤,是全球癌症死亡的第三大主要原因。在初次就诊时,有20%的被诊断为CRC的患者患有转移性CRC(MCRC),另有25%的患有局部疾病的患者将后来发展转移。尽管通过各种调节策略(例如化学疗法)结合靶向治疗,放射疗法和免疫疗法的反应率提高了,但MCRC的预后较差,5年生存率为14%,而治疗失败的主要原因被认为是对治疗疗法抗药性的发展。在此,我们提供了MCRC中抗性的主要机制的概述,并在特定的情况下强调了药物运输,EGFR和HGF/C-MET信号传导途径在介导MCRC耐药性中的作用,并讨论了近期的治疗方法,该方法是由药物和阻力引起的抗药性和抗阻力,以抗药性和抗阻力为抗抗阻力,以抗抗阻力,以抗抗体的抗性/cont,抗抗阻力,抗抗EG,抗抗抗阻抗,抗抗体,抗抗抗素,抗抗体/抗性,抗抗体/抗性,抗抗体/抗性,抗抗体/抗性抗抗药性,以抗体和阻力为抗抗体抗性/抗性抗抗药性。信号通路。
脊椎动物视觉系统的光感受器的发展受复杂的转录调节网络控制。otx2在有丝分裂视网膜祖细胞(RPC)中表达,并控制感光体发生。由OTX2激活的CRX在细胞周期出口后在感光前体中表达。neurod1也存在于可以指定为杆和锥形光感受器亚型中的光感受器前体中。NRL,并调节包括孤儿核受体NR2E3在内的下游杆特异性基因,该基因进一步激活了杆特异性基因并同时抑制了锥体特异性基因。锥形亚型规范也受到诸如THRB和RXRG等几个转录因子的相互作用的调节。这些关键转录因子中的突变是出生时眼部缺陷的原因,例如微感染和遗传感受器疾病,例如Leber先天性症状(LCA),色素性视网膜炎(RP)和盟友性疾病。特别是,许多突变是以常染色体主导方式遗传的,包括CRX和NRL中的大多数错义突变。在这篇综述中,我们描述了与上述转录因子中突变相关的光感受器缺陷的光谱,并总结了当前对致病突变下的分子机制的知识。终于,我们考虑了理解基因型 - 表型相关性和轮廓途径的杰出差距,以实现对治疗策略的未来研究。
1耶鲁大学医学院神经外科系,康涅狄格州纽黑文; 2马萨诸塞州波士顿,马萨诸塞州综合医院神经外科部; 3弗吉尼亚大学弗吉尼亚大学医学院神经外科系; 4纽约纽约纽约市兰蒙医学中心汉斯乔尔·维斯(HansjörgWyss)整形外科系; 5加州洛杉矶分校的戴维·格芬医学院人类遗传学系; 6耶鲁大学纽黑文耶鲁大学医学院整形外科手术系; 7马萨诸塞州波士顿的哈佛医学院贝丝·以色列医学中心肾脏病和血管生物学研究中心医学系; 8马萨诸塞州剑桥的麻省理工学院和哈佛大学研究所; 9哈佛大学发展中心,马萨诸塞州马萨诸塞州综合医院,马萨诸塞州,马萨诸塞州
?),ying.zhang84@whu.edu.cn(y.z。)https://doi.org/10.1016/j.stem.2023.10.007https://doi.org/10.1016/j.stem.2023.10.007
具有 SLICK 单倍型的牛具有光滑且短的毛发特征,SLICK 单倍型的主要优点之一是其在改善牛的体温调节方面发挥的作用,尤其是在炎热潮湿的气候下。导致牛出现光滑表型的致病变异主要位于催乳素受体基因的第 11 个外显子中,但应注意的是,并非在此区域发现的所有变异都会导致光滑表型(Porto-Neto 等人,Front. Genet.,9:57,2018)。尽管如此,这些单个等位基因对于 CRISPR 实验中的引导设计问题仍然至关重要,特别是那些旨在敲除或修改催乳素受体基因的实验。这些单个等位基因的鉴定有助于更全面地了解该区域的遗传变异,并可帮助研究人员为他们的实验设计更精确、更有效的引导 RNA。因此,即使不直接导致光滑表型的等位基因,在增进我们对与这一基本特征有关的潜在遗传机制的了解方面也具有重要价值。本研究旨在评估体外受精 (IVF) Bos taurus x Bos indicus 杂交牛胚胎的基因组序列,特别关注 PRLR 区域。单独收集囊胚,并使用两步孵育法用蛋白酶 K (1,5ug/uL) 裂解缓冲液进行 DNA 提取。随后,重复进行 PCR 扩增,并对 PCR 片段进行 Sanger 测序。使用 Unipro Ugene 软件进行序列分析 (Okonechnikov K., et al. Bioinformatics, 28 (8):1166-7, 2012)。共分析了 15 个样本,发现 33.3% (5/15) 的样本在位置 39099463 处出现单个突变 (C>T),导致丝氨酸被替换为终止密码子,这是之前未曾报道过的。此外,在一个位置很近的区域中发现了一对错义突变,60% 的样本在位置 39099322 处出现精氨酸被替换为亮氨酸的突变 (G>T),而所有样本在位置 39099190 处出现丝氨酸被替换为亮氨酸的突变 (C>T)。最后,在位置 39099368 处发现了一个静默突变,可能导致 60% 的样本中的胞嘧啶被胸腺嘧啶替换,在这两种情况下都会导致酪氨酸的合成。根据初步分析的结果,可以推断该区域具有较高的遗传变异潜力。因此,建议在设计旨在引入插入/缺失以促进光滑表型的向导 RNA 之前,检查杂交动物的目标基因组区域并与 Bos taurus 进行比较。总之,本研究的结果为了解牛 PRLR 区域的遗传变异提供了宝贵的见解,这可能会影响基因编辑效率。